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Abstract

The phonon wind mechanism, that is, the anharmonic interaction and scattering of
phonons by a moving dislocation, imparts a drag force B(v, T, ρ) v on the dislocation. The
drag coefficient B has been previously computed and experimentally determined only for
dislocation velocities v much less than transverse sound speed, cT. In this paper we derive an
expression for the velocity dependence of B up to cT in terms of the third-order elastic con-
stants of the crystal. We compute the velocity dependence of the phonon wind contribution
to B in the range 1%–90% cT for Al, Cu, Fe, and Nb in the isotropic Debye approximation,
and to better accuracy than in earlier studies. It is proved that the drag coefficient for screw
dislocations scattering transverse phonons is finite as v → cT, whereas B is divergent for
edge dislocations scattering transverse phonons in the same limit. We compare our results to
experimental results wherever possible and identify ways to validate and further improve the
theory with more realistic phonon dispersion relations, MD simulations, and more accurate
measurements.
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1 Introduction and Outline
Dislocations are curvilinear defects in the crystal structure of the metal. The dislocations move,
or glide through the crystal in an applied stress field at a speed that is controlled by two
mechanisms. At low to intermediate plastic strain rates (≤ 105s−1) the speed of the mobile
dislocations is limited by their interactions with immobile (forest) dislocations that result in
the formation of dislocation-dislocation nodes and short junctions. At finite temperature, the
combination of the applied stress and local stress fluctuations arising from atomic oscillations
result in dissociation of the nodes, hence continued glide. The rate-controlling intersection of non-
coplanar, attractive mobile and immobile dislocations has traditionally been described by Van’t
Hoff-Arrhenius thermal activation theory, but this approach breaks down at high strain rates, so
it was recently generalized to strain rates of nearly 1012s−1 [1]. At high strain rates (≥ 105s−1)
the dislocation speed is limited by both dislocation-dislocation interactions and viscous drag;
the drag increases with the strain rate (∼ dislocation speed). The drag force per unit length of
dislocation is B(v, T, ρ) v where B is the dislocation drag coefficient, v is the dislocation velocity,
T is the temperature, and ρ is the material density. The drag coefficient is essential for models of
single-crystal plasticity, polycrystal plasticity, and ductile failure applicable at high stresses and
strain rates. In this high stress regime, where mean dislocation speeds vary from a few percent
of transverse sound speed, cT, up to nearly cT, the dominant contribution to the dislocation
drag coefficient is the scattering of phonons by the moving dislocations; in the rest frame of a
moving dislocation the phonons moving past the dislocation act as a ‘phonon wind’ opposing its
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glide through the crystal. Other dissipative effects, which we do not touch upon in this paper as
they are subleading in the regimes of interest, are the thermoelastic damping and the radiation
damping mechanisms, discussed for example in Ref. [2].

At low velocities, i.e. velocities less than a few percent of transverse sound speed, the drag
coefficient due to phonon wind is roughly constant, but at higher velocities the drag coefficient
increases nonlinearly. We note that existing continuum scale models of dislocation drag assume
that the dislocation velocity is much smaller than cT. There is currently no theoretical frame-
work available in the literature for the accurate calculation of the velocity dependence of the
dislocation drag coefficient up to cT. Accordingly, the main focus of this paper is the develop-
ment of such a framework: earlier first-principles continuum models of dislocation drag due to
phonon wind are extended from low velocities to nearly cT. The same framework also provides
the temperature dependence of the drag coefficient up to velocities in the neighborhood of cT,
and is flexible enough to incorporate more realistic dispersion curves (the Debye approximation
is used here) as well as more accurate experimental or numerical (quantum molecular dynamics)
data on third-order elastic constants.

In this paper we restrict our study to velocities comparable to but strictly less than cT, and
dislocation-dislocation interactions are neglected. The case of supersonic dislocations is interest-
ing in its own right, not least because of recent MD simulations and experiments that indicate
the existence of dislocations moving at supersonic speeds in certain specialized materials such as
liquid crystals or plasma crystals; see [3–6] and references therein. The extension of the theory to
include dislocations moving at supersonic speeds, and dislocation-dislocation interactions, will
be left for future work.

The outline of the paper is as follows. In order to provide a self-contained presentation, in
Section 2 we expand the crystal potential in terms of displacements from the perfect lattice [7]
to obtain the crystal Hamiltonian. We then consider a number of approximations and simplifica-
tions, such as the restriction to monatomic lattices, and the assumption of material isotropy. We
employ the Debye approximation for the phonon spectrum. These simplifying approximations
enable a semi-analytic approach in which experimentally determined second- and third-order
elastic constants are used rather than numerical data from classical or quantum MD simula-
tions. In Section 3 we discuss the displacement fields of edge and screw dislocations following
Eshelby [8] and [9], and references therein. Section 4 is devoted to the phonon wind contribution
to the drag coefficient in the continuum approximation. With the Debye approximation for the
phonon spectrum, most of the computation of the drag coefficient can be performed analytically,
leaving only a three-dimensional integral that is evaluated numerically. In Section 5 we present
and discuss our results for a number of metals and compare to experimental values and MD
simulations.

2 Isotropic Solids: Hamiltonian and Elastic Constants
In this section we provide a short review of the elements of continuum elasticity theory pertinent
to the calculation of the drag coefficient.

2.1 Hamiltonian for an Isotropic Crystal

The Hamiltonian of a crystalline lattice can be expressed in the form

H = 1
2
∑
A

M (A)ṙ(A) 2 + Φ{r(A)} (2.1)
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where M (A) is the mass of the atom at lattice site A, {r(A)} is the set of all atomic position
vectors, and Φ{r(A)} is the crystal potential energy function. The crystal potential Φ may be
expanded in a Taylor series about the set of equilibrium lattice positions {R(A)},

Φ{r} = Φ{R}+
∑
A,i

Φ(A)
i u

(A)
i + 1

2
∑
AB,ij

Φ(AB)
ij u

(A)
i u

(B)
j + 1

3!
∑

ABC,ijk

Φ(ABC)
ijk u

(A)
i u

(B)
j u

(C)
k + . . . (2.2)

where
u

(A)
i ≡ r(A)

i −R(A)
i (2.3)

are the Cartesian components i = x, y, z of the displacement of atom A from its equilibrium
position R(A), {r} ≡ {r(A)}, {R} ≡ {R(A)}, and

Φ(A)
i = ∂Φ

∂r
(A)
i

∣∣∣∣
{r}={R}

= 0 , (2.4a)

Φ(AB)
ij = ∂2Φ

∂r
(A)
i ∂r

(B)
j

∣∣∣∣
{r}={R}

, (2.4b)

Φ(ABC)
ijk = ∂3Φ

∂r
(A)
i ∂r

(B)
j ∂r

(C)
k

∣∣∣∣
{r}={R}

. (2.4c)

Since the {R(A)} are the equilibrium positions of the atoms, the first variation of Φ{r} with
respect to the u(A)

i , (2.4a), vanishes.
In the continuum limit the displacement field is a continuous function of position, u(A)

i ≡
ui(R(A))→ ui(x), and we have the nine displacement gradients

ui,j ≡
∂ui
∂xj

. (2.5)

We now consider a homogeneous deformation of the lattice, that is, a deformation for which the
gradients are constants

u
(A)
i = ui,j R

(A)
j . (2.6)

Substituting this into (2.2) we obtain

Φ{r} = Φ{R}+ V

2
∑
ijkl

Cklij ui,k uj,l + V

6
∑

ijklmn

Dlmn
ijk ui,l uj,m uk,n + . . . (2.7)

where the elastic constants are defined by

Cklij ≡
1
V

∑
AB

Φ(AB)
ij R

(A)
k R

(B)
l , (2.8a)

Dlmn
ijk ≡

1
V

∑
ABC

Φ(ABC)
ijk R

(A)
l R(B)

m R(C)
n . (2.8b)

Since summing over all lattice sites in (2.8) results in an extensive quantity, proportional to the
total number of lattice sites and hence to the total volume of the crystal, the factor of the total
volume V is extracted explicitly from definitions of the elastic constants (2.8) to yield intensive
quantities independent of the total volume.
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Assuming that the displacements are slowly varying over the lattice, hence the dimensionless
gradients are small and slowly varying, the continuum Hamiltonian follows from (2.7)

H =
∫
d3x

{
1
2 ρ0

∑
i

u̇2
i + 1

2
∑
ijkl

Cklij ui,k uj,l + 1
6
∑

ijklmn

Dlmn
ijk ui,l uj,m uk,n

}
+ . . . . (2.9)

Variation of the Hamiltonian yields the equation of motion for the continuous displacement field

ρ0
∂2ui
∂t2

=
∑
jkl

Cklij
∂2uj
∂xk∂xl

+
∑
jklmn

Dlmn
ijk

∂

∂xl

(
∂uj
∂xm

∂uk
∂xn

)
+ . . . (2.10)

where
ρ0 = 1

V

∑
A

M (A) (2.11)

is the average equilibrium mass density. The harmonic approximation of linear elastic displace-
ments is obtained by neglect of all terms beyond the linear ones in (2.10), and treating the next
order anharmonic terms involving Dlmn

ijk as a small perturbation to the linear approximation. We
emphasize that this linear and weak anharmonic approximation is restricted to the limit where
the dimensionless gradients (2.5) are both small compared to unity and slowly varying on the
distance scale of the underlying crystal lattice.

The variation of the integrand of the potential term in the Hamiltonian (2.9), i.e.∑
ij

τij dui,j =
∑
ijkl

Cklij uj,l dui,k + 1
2
∑

ijklmn

Dlmn
ijk uj,m uk,n dui,l + . . . (2.12)

provides the stress tensor

τij =
∑
kl

Cjlik uk,l + 1
2
∑

ijklmn

Djmn
ikl uk,m ul,n + . . . (2.13)

in terms of the displacement gradients. It follows from angular momentum conservation that
the stress tensor is symmetric, hence it depends only on the symmetric part of ui,j , that is, the
infinitesimal strain

u(i,j) = 1
2(ui,j + uj,i) ≡ εij . (2.14)

The antisymmetric part of the displacement gradient

u[i,j] = 1
2(ui,j − uj,i) ≡ ωij . (2.15)

is pure rotation. Both small deformations of the crystal lattice, as well as the relatively larger
dislocations, generally contain regions with both symmetric and antisymmetric gradients.

2.2 Second-order Elastic Constants and Phonons

Although bulk continuum quantities, the form of the elastic tensors Cklij and Dlmn
ijk still depend

upon the underlying discrete symmetry group of the crystal. However, for polycrystals a reason-
able approximation is obtained by averaging over directions and assuming that the undeformed
crystal can be treated as homogeneous and isotropic. In that case the number of independent
tensors that can appear in Cklij and Dlmn

ijk is greatly reduced. The integrand in the Hamiltonian
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(2.9) must be a rotationally invariant scalar, and there are only two such independent scalars at
second order in u, namely

(∇ · u)2 =
(
ui,i
)2 and (∇× u)2 = 2ωij ωij = u2

i,j − ui,juj,i (2.16)

involving only the symmetric and anti-symmetric parts of the displacement gradient respectively.
The continuum isotropic potential may be expressed in the form

U2 = 1
2 (λ+ 2µ)

∫
d3x (∇ · u)2 + 1

2 µ
∫
d3x (∇× u)2 (2.17)

at second order in the displacement gradients ui,j , where λ and µ are the (positive) Lamé
coefficients. Up to an integration by parts and surface contribution this corresponds to

Cklij = λ δikδjl + µ (δijδkl + δilδjk) (2.18)

and leads to the linearized continuum eqs. of motion [10, 11]

ρ0
∂2u
∂t2

= µ∇2u + (λ+ µ)∇
(
∇ · u

)
(2.19)

for the displacement vector field u(x, t), in which the anharmonic terms have been neglected.
The Lamé constants µ, λ are related to the bulk and shear moduli B and G via G = µ−P and
B + 4

3G = λ+ 2µ− P . Here, however, we neglect pressure and hence assume P ≈ 0.
Since any vector u can be separated into its transverse (T) and longitudinal (L) parts by

ui = u
(T)
i + u

(L)
i =

(
ui − ∂i

1
∇2∂juj

)
+ ∂i

1
∇2∂juj (2.20)

with ∇ · u(T) = 0, which are orthogonal, the linearized continuum eq. (2.19) separates into two
independent linear equations

ρ0
∂2u(T)

∂t2
= µ∇2u(T) (2.21a)

ρ0
∂2u(L)

∂t2
= (λ+ 2µ)∇

(
∇ · u(L) ) (2.21b)

for the transverse and longitudinal displacements respectively. Each of these equations has the
form of a wave equation, but with a different speed of propagation, depending upon whether
the particle motion is transverse or longitudinal (i.e. parallel) to its direction of propagation.

The transverse and longitudinal sound wave solutions of (2.19) are easily found. The two
transverse modes are

u
(T)
i (x, t|k, s) = ei(k, s) eik·x−iωTt , k · e(k, s) = 0 (2.22)

with dispersion relation and sound speed

ωT(k) = cTk , cT =
√
µ

ρ0
, (2.23)

where k ≡ |k| and s = 1, 2 labels the two unit polarization vectors eTs transverse to the direction
of propagation k̂. The longitudinal mode

u
(L)
i (x, t|k) = ei(k, 3) eik·x−iωLt , k× e(k, 3) = 0 (2.24)

6



with displacements in the direction of propagation, has dispersion relation and sound speed

ωL(k) = cLk , cL =
√
λ+ 2µ
ρ0

> cT . (2.25)

To simplify the notation the polarization indices s, s′ = 1, 2 label the two transverse sound
modes, and s = 3 or s′ = 3 labels the single longitudinal mode, so that the polarization vectors
satisfy ∑

i=1,2,3
ei(k, s) ei(k, s′) = δss′ and

∑
s=1,2,3

ei(k, s) ej(k, s) = δij (2.26)

and form an orthonormal basis set. Additionally, they satisfy (2.26) and ei(−k, s) = e∗i (k, s).
Note that because the transverse modes have non-zero curl, and (∇×u)i = εijkωjk they provide
a non-vanishing antisymmetric gradient field ωij 6= 0.

The small elastic displacement fields may be quantized in terms of three phonon modes by

ui(x, t)
∣∣∣
phonon

=
√

~
ρ0

∑
s

∫
d3k

(2π)3
1√

2ωs(k)

{
âs(k)eik·x−iωst + â†s(k)e−ik·x+iωst

}
ei(k, s) (2.27)

where the phonon creation and destruction operators are quantized with the continuum normal-
ization

[âs(k), â†s′(k
′)] = (2π)3 δ3(k− k′) δss′ (2.28)

in the infinite volume limit. Note also that at the linear order of continuum elastic theory the
phonon modes necessarily have gapless linear dispersion relations ωT(k) = cTk, ωL(k) = cLk,
characteristic of the Debye approximation.

2.3 Third-order Elastic Constants for an Isotropic Solid

For the third order potential energy involving the elastic constants Dlmn
ijk there exist five distinct

independent scalars involving three displacement gradients, and the third order potential in (2.9)
is

U3 =
∫
d3x

{
a (εii)3+ b εiiεjkεjk + c εijεjkεki + g εii(εnjkωjk)(εnlmωlm) + h εij(εiklωkl)(εjmnωmn)

}
=
∫
d3x

{
a (ui,i)3 +

(
b

2 + g + h

)
ui,i uj,k uj,k +

(
b

2 − g − h
)
ui,i uj,k uk,j

+
(
c

4 + h

)
ui,j uj,k uk,i +

(
3c
4 − h

)
ui,j ui,k uk,j

}
(2.29)

where the a, b, c coefficients multiply terms which are totally symmetric (denoted SSS) while
the g, h coefficients multiply terms with one symmetric, two antisymmetric gradients (denoted
SAA). Terms with odd powers of the antisymmetric gradients (SSA or AAA) are odd under
parity and do not appear in U3 if we assume that the isotropic crystal is symmetric with respect
to reflections about any plane.

The five coefficients of the third-order terms in (2.29) are in general independent of each
other and the second-order Lamé constants λ and µ, and in general all five coefficients can be
non-zero and should be allowed. It appears however that the independence of the third-order
SAA elastic constants g, h from the a, b, c and λ, µ elastic constants has not been fully taken into
account in the previous literature. This is due to the fact that only the symmetrized strain field

7



εij has been considered relevant, and the independent SAA g, h terms in the third-order elastic
energy have been neglected. Instead an expansion in the non-linear strain field (also known
Murnaghan strain [12] or Green-Saint-Venant strain tensor [13])

ηij = εij + 1
2
∂uk
∂xi

∂uk
∂xj

, (2.30)

which is fully symmetric in indices i, j has been employed. Then if the two independent SAA
constants are set to zero in U3, but the total potential

1
2C

kl
ij ηikηjl + 1

6D̃
lmn
ijk ηilηjmηkn

with 1

D̃lmn
ijk ≡ Dlmn

ijk (a, b, c→ ã, b̃, c̃)
∣∣∣
g=h=0

= 6 ã δilδjmδkn

+ b̃
[
δil (δjkδmn + δjnδmk) + δjm (δikδln + δinδlk) + δkn (δijδlm + δimδlj)

]
+ 3 c̃

4
[
δij (δlkδmn + δlnδmk) + δlm (δikδjn + δinδjk)

+ δim (δlkδjn + δlnδjk) + δlj (δikδmn + δinδmk)
]

(2.31)

is expanded up to third order in the gradients ui,j , one obtains an effective third-order elastic
tensor [7, 16]

Dlmn
ijk = D̃lmn

ijk + C lnimδjk + Cmnjl δik + Cmnlk δij , (2.32)

containing an admixture of the second-order λ, µ coefficients. Indeed in this way one obtains the
same polynomial for U3 as (2.29), but with

a = ã , b = b̃+ 1
2 λ , c = c̃+ µ , (2.33a)

g = 1
4 (λ+ µ) , h = −1

4 µ , (2.33b)

with the SAA terms effectively generated only by the lower-order Lamé coefficients λ, µ, instead
of being truly independent third-order constants as they should be. Since U3 was expanded in
terms of ηij rather than the general displacement gradients ui,j = εij + ωij containing both
symmetric and antisymmetric terms, no independent third-order constants appear within g and
h (which is consistent with the earlier literature as pointed out above). It is clear even at
linearized order of phonon excitations that the antisymmetric gradients ωij are present since
ei(k, s)kj 6= ej(k, s)ki for the transverse polarizations s = 1, 2.

Finally, the third-order elastic constants ã, b̃, and c̃ are related to the well-known Murnaghan
constants, l, m, n, as follows:

ã = 1
3 (l−m) + 1

6n , b̃ = m− 1
2n , c̃ = 1

3n . (2.34)

1Ref. [14] writes the same general expression for the isotropic third-order elastic constants using ν1 = 6ã,
ν2 = b̃, and ν3 = 3c̃/4. According to Ref. [15], the νi are related to the Murnaghan constants via l = ν2 + ν1/2,
m = 2ν3 + ν2, and n = 4ν3. Presently, this leads us to eq. (2.34).
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The metals we are interested in have cubic I symmetry and are therefore described by three
second-order and six third-order elastic constants. However, if we consider polycrystals, isotropy
is a reasonable assumption, and the effective isotropic constants are averaged quantities. Because
of high uncertainties in the theoretical averaging procedure when effective isotropic constants
are computed from the single-crystal cubic ones [17, 18], we have refrained here from doing
so. Instead, we have used experimentally measured effective isotropic constants; see Table 1 in
Section 5.

3 Edge and Screw Dislocations: Displacement Fields
An infinite edge dislocation along the ẑ axis with Burgers vector in the x̂ direction is described
by the displacement vector d(x) with components [19, 20]

dx(x, y) = b

2π

{
tan−1

(
y

x

)
+
(
λ+ µ

λ+ 2µ

)
xy

x2 + y2

}
(3.1a)

dy(x, y) = b

2π

( 1
λ+ 2µ

){
−µ2 ln

(
x2 + y2

r2
0

)
+ (λ+ µ) y2

x2 + y2

}
(3.1b)

dz = 0 (3.1c)

where b is the magnitude of the Burgers’ vector, and r0 is the dislocation core radius. Similarly
an infinite screw dislocation along the ẑ axis is described by the displacement vector d(x) with
components [19, 20]

dx = dy = 0 (3.2a)

dz(x, y) = b

2π tan−1
(
y

x

)
(3.2b)

whose Burgers vector b = bẑ in the ẑ direction. Each of these dislocation displacements are so-
lutions of the equations of linearized static continuum elasticity (2.19), everywhere except at the
origin x = y = 0, where they are singular. The edge dislocation (3.1) contains both longitudinal
(L) components with zero curl and transverse components (T) with zero divergence, whereas
the screw dislocation (3.2) is purely transverse (T). The non-zero transverse displacements have
anti-symmetric rotation strain fields, hence ωij = u[i,j] 6= 0, and both dislocations have non-zero
internal torques.

In order to find the solutions of the linear elastic eqs. (2.19) for dislocations moving with
uniform velocity v = vx̂ (with ξ̂ = ẑ, b̂ = x̂), Eshelby decomposed the stationary edge disloca-
tion (3.1) into its transverse and longitudinal parts, using the effective Lorentz invariance of the
eqs. (2.21), and obtained [8]

dx(x, y; t) = b

πβ2
T

{
tan−1

[
y

γL(x− vt)

]
−
(

1− β2
T
2

)
tan−1

[
y

γT(x− vt)

]}
,

dy(x, y; t) = b

2πβ2
T

{
1
γL

ln
[

(x− vt)2 + y2/γ2
L

r2
0

]
− γT

(
1− β2

T
2

)
ln
[

(x− vt)2 + y2/γ2
T

r2
0

]}
, (3.3)

for an edge dislocation gliding in an isotropic elastic solid in the x direction with uniform velocity
v, where

βT,L ≡
v

cT,L

, γT,L =
√

1
1− β2

T,L

, (3.4)
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following the standard notations of special relativity 2. We consider below only gliding edge and
screw dislocations, as dislocation climb is highly suppressed and hence can be neglected in the
discussion of phonon wind [21].

One may check that dx,y above indeed satisfy eq. (2.19). In fact, one may check that the
first (resp. second) terms of d(x, y; t) depending only on γL (resp. γT) satisfy eq. (2.21) indepen-
dently of each other. However, only with this particular combination in (3.3) will no external
concentrated force need to be applied in the y-direction at the core of the dislocation (where
x = y = 0), see e.g. [9]. We note that dy differs from some other results found in the literature
by an arbitrary constant. For example, if we take the limit v → 0 in (3.3) (and neglect the
regulator, i.e. r0 → 1) and express the results in terms of the Poisson ratio ν = λ/2(µ + λ),
our expression for dy differs from those in Ref. [11] by a constant b/8π(1− ν), but agrees with
the original result of Burgers [19]. Since the interaction Hamiltonian (4.6) depends only on the
gradient of the dislocation displacement, this additive constant is of no physical relevance.

The gradients of the dislocation displacement field (3.3) are

di,j := ∂jdi ,

dx,x = −by
πβ2

T

 1/γL(
(x− tv)2 + y2/γ2

L
) −

(
1− β2

T
2

)
/γT(

(x− tv)2 + y2/γ2
T
)
 ,

dx,y = b(x− tv)
πβ2

T

 1/γL(
(x− tv)2 + y2/γ2

L
) −

(
1− β2

T
2

)
/γT(

(x− tv)2 + y2/γ2
T
)
 ,

dy,x = b(x− tv)
πβ2

T

 1/γL(
(x− tv)2 + y2/γ2

L
) − γT

(
1− β2

T
2

)
(
(x− tv)2 + y2/γ2

T
)
 ,

dy,y = by

πβ2
T

 1/γ3
L(

(x− tv)2 + y2/γ2
L
) −

(
1− β2

T
2

)
/γT(

(x− tv)2 + y2/γ2
T
)
 , (3.5)

or written in polar coordinates at time t = 0:

dx,x(r, θ) = −b sin θ
πβ2

Tr

 1/γL(
1− β2

L sin2 θ
) −

(
1− β2

T
2

)
/γT(

1− β2
T sin2 θ

)
 ,

dx,y(r, θ) = b cos θ
πβ2

Tr

 1/γL(
1− β2

L sin2 θ
) −

(
1− β2

T
2

)
/γT)(

1− β2
T sin2 θ

)
 ,

dy,x(r, θ) = b cos θ
πβ2

Tr

 1/γL(
1− β2

L sin2 θ
) −

(
1− β2

T
2

)
γT(

1− β2
T sin2 θ

)
 ,

2 Note that our definition of γ differs from Eshelby by γ → 1/γ.
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dy,y(r, θ) = b sin θ
πβ2

Tr

 1/γ3
L(

1− β2
L sin2 θ

) −
(

1− β2
T
2

)
/γT(

1− β2
T sin2 θ

)
 . (3.6)

Note that the infinitesimal symmetric strain εxy = (dx,y + dy,x)/2 vanishes at y = 0 (resp.
sin θ = 0) at a dislocation velocity v = cR which satisfies the relation γLγT = (1−β2

T/2)−2. This
velocity is known as the Rayleigh wave velocity (which is the velocity of surface waves) [9, 20],
and is always smaller than (but fairly close to) the transverse sound speed, cR < cT, a typical
value being cR ≈ 0.93cT.
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Figure 1: A component of the gradient of the displacement field of a edge dislocation, dyx

(assuming cL ≈ 2cT), is shown (from left to right) for velocities v = 0, v = 0.5ct, and
v = 0.9cT. The latter leads to an enhanced gradient. An increase in the dislocation velocity
is accompanied by expansion of the core region where linear elasticity, di,j � 1, breaks
down. This expansion is more prominent perpendicular to v, i.e. in the y-direction.

The time-dependent displacement field of a screw dislocation with sense vector ξ̂ along the
positive z-axis, gliding in the x direction at velocity v, is given by [8]

dz(x, y; t) = b

2π tan−1
[

y

γT(x− vt)

]
. (3.7)

One may check that dz above indeed satisfies eq. (2.19). Its gradient is easily computed resulting
in

dz,x = − b y/γT
2π
(
(x− tv)2 + y2/γ2

T
) , dz,y = b (x− tv)/γT

2π
(
(x− tv)2 + y2/γ2

T
) . (3.8)

We now calculate the Fourier transforms of the moving edge and screw dislocation deforma-
tion fields for ξ̂ = ẑ.
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Figure 2: A component of the gradient of the displacement field of a screw dislocation, dz,x,
is shown (from left to right) for velocities v = 0, v = 0.5ct, and v = 0.95cT. The latter leads
to an enhanced gradient. An increase in the dislocation velocity is accompanied by expansion
perpendicular to v (i.e. in the y-direction) of the core region where linear elasticity, di,j � 1,
breaks down.

Neglecting the finite core size of the dislocation (r0 → 0), we define

d̃i,j(q, φ) =
∞∫
0

drr

2π∫
0

dθ di,j(r, θ)e−iqr cos(θ−φ) , (3.9)

and get

d̃x,x(q, φ) = 2ib sinφ
β2

Tq

 1(
1− β2

L cos2 φ
) −

(
1− β2

T
2

)
(
1− β2

T cos2 φ
)
 ,

d̃x,y(q, φ) = −2ib cosφ
β2

Tq

 γ−2
L(

1− β2
L cos2 φ

) −
(

1− β2
T
2

)
γ−2

T(
1− β2

T cos2 φ
)
 ,

d̃y,x(q, φ) = −2ib cosφ
β2

Tq

 γ−2
L(

1− β2
L cos2 φ

) −
(

1− β2
T
2

)
(
1− β2

T cos2 φ
)
 ,

d̃y,y(q, φ) = −2ib sinφ
β2

Tq

 γ−2
L(

1− β2
L cos2 φ

) −
(

1− β2
T
2

)
(
1− β2

T cos2 φ
)
 . (3.10)
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The details of the derivation leading to (3.10) as well as a short discussion on cutoffs taking
into account the finite dislocation core size r0 and the mean separation α of dislocations can be
found in Appendix A. There we argue that neglecting both cutoffs will change our results by
10% or less, provided r0 < b/3 and α > 50b. The advantage of taking the limits r0 → 0 and
α→∞, on the other hand, is reflected in the simple expression (3.10) above.

The limitations of this approximation are illustrated in Figures 1 and 2. Although our esti-
mate on the effect of the cutoffs should be adequate for a wide range of dislocation velocities, we
expect a breakdown of the present theory close to transverse sound speed. The reason is that a
core region where the assumption of small strains allowing the use of linear elasticity is invalid,
becomes larger with increasing velocity. Therefore, we will limit our discussion in Section 5 to
velocities v . 0.9cT.

For later reference, we note that the trace of the edge dislocation’s displacement gradient
field simplifies to

d̃i,i(q, φ) = d̃x,x(q, φ) + d̃y,y(q, φ) = 2ib c2
T sinφ

q c2
L
(
1− β2

L cos2 φ
) . (3.11)

Following the same steps as for edge dislocations, we find the Fourier transform of the
corresponding displacement gradient field (without cutoffs) for the screw case:

d̃z,x(q, φ) = ib sinφ
q
(
1− β2

T cos2 φ
) , d̃z,y(q, φ) = − ib γ−2

T cosφ
q
(
1− β2

T cos2 φ
) ; (3.12)

all other components vanish.

4 The Phonon Wind Contribution to the Drag Coefficient

4.1 General Considerations

The thermal phonons in a crystal are scattered by gliding dislocations, thereby resulting in a
drag force on the dislocations. By analogy with linear (Stokes) drag on objects moving through
fluids at low velocities (low Reynolds numbers), the dislocation drag force per unit length is
written

F = B v , (4.1)

where B = B(v, T ) is the dislocation drag coefficient. At low velocities B is approximately
independent of the dislocation velocity (see results below), hence the drag is approximately
linear. Typical low-velocity values of B are in the range 10−4 – 10−3 Poise (10−2 – 10−1 mPa s).
The energy dissipated per unit time per unit length of a dislocation is

D = F v = B v2 . (4.2)

In discussing dislocations interacting with phonons, i.e. the phonon wind, the Hamiltonian
of interest consists of a sum of two terms

H = Hph +Hint(t) (4.3)

where Hph is the free phonon contribution while Hint(t) is the time-dependent interaction Hamil-
tonian between the phonons and the moving dislocation. In the following we will denote the
dislocation wave vector by q (cf. previous section), whereas the phonon momenta will be q′, q′′.
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In the continuum limit where the lattice spacing goes to zero, the discrete sum over momenta
may be replaced by an integral over the first Brillouin zone (BZ). Thus

Hph →
~
2
∑
s

∫
d3q′

(2π)3 ωs(q
′)
(
â†s(q′) âs(q′) + âs(q′) â†s(q′)

)
(4.4)

where the quantized phonon mode creation and destruction operators obey the commutation
relation (2.28), in the continuous momentum variables, presently denoted q′, q′′.

The interaction Hamiltonian Hint may be obtained from eq. (2.29) by reinterpreting the
displacements as superpositions of phonons and displacements due to a moving dislocation. For
the displacement gradients appearing in U3 this means ui,j → Ui,j = ui,j + di,j , and

di,j(x, t) =
∫

d3q
(2π)3 d̄i,j(q) exp {iq · (x− vt)} (4.5)

where d̄i,j(q) is the Fourier transform of the static deformation field of the dislocation and
v its velocity. We obtain the time-dependent interaction Hamiltonian by keeping those terms
containing two displacement gradients due to phonons ui,j and one due to the dislocation:

Hint(t) = 1
2!

∑
ijki′j′k′

Di′j′k′

ijk

∫
d3x ui,i′(x)uj,j′(x) dk,k′(x, t)

=
∫
d3x

{(
l−m + n

2

)
(ui,i)2dk,k + 1

2

(
m− n

2 + λ
)

(di,i uj,k uj,k + 2ui,i uj,k dj,k)

+ 1
2

(
m− n

2

)
(di,i uj,k uk,j + 2ui,i uj,k dk,j) + n

4 ui,j uj,k dk,i

+
(n

4 + µ
)

(di,j ui,k uk,j + ui,j di,k uk,j + ui,j ui,k dk,j)
}
. (4.6)

with elastic constants following from (2.31), (2.32), (2.33), and (2.34). The elastic deformation
fields are given in terms of the phonon modes (2.27) by

ui,j(x) = i

√
~

2ρ0

∑
s

∫
d3q′

(2π)3
1√
ωs(q′)

(
âs(q′) + â†s(−q′)

)
eiq
′·x q′j ei(q′, s) (4.7)

in the continuum limit of an infinite crystal, where ρ0 is its mass density and ei(q′, s) is the
polarization vector of the elastic deformation.

Substituting these relations into (4.6) and noting that the integration over x gives a mo-
mentum conserving δ-function which sets q′′ = q′− q (upon flipping the sign of q′ under the
integral), we secure

Hint(t) =
∑
ss′

∫
d3q′

(2π)3

∫
d3q

(2π)3 ξ
†
s(q′) ξs′(q′− q) Γss′(q′,q′ − q) e−iq·vt (4.8)

where

Γss′(q′,q′ − q) = ~
4ρ0

1√
ωs(q′)ωs′(q′− q)

×
∑

ijki′j′k′

Di′j′k′

ijk q′i′(q′− q)j′e∗i (q′, s)ej(q′− q, s′) d̄kk′(q) (4.9)
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is the vertex describing the interaction between the dislocation and the phonon modes. We have
also defined

ξs(q′) ≡ âs(q′) + â†s(−q′) = ξ†s(−q′) (4.10)

and used ωs(−q′) = ωs(q′) and (2.26) in arriving at (4.8).
Note that the form of Γ in (4.9) coincides (up to notation) with the one given in Ref. [22] (see

also [23–25] for earlier work on phonon wind). Since the vast majority of high-rate plastic flow
calculations are performed for temperatures on the order of and higher than the Debye temper-
ature, we neglect here the so-called flutter effect which is important only at low temperatures;
see [21] for details.

We choose coordinates so that edge and screw dislocations are along the z-axis and the
dislocations move with speed v in the x-direction. Thus the glide plane for edge dislocations will
be the x-z plane and we can write

d̄i,j(q) = 2πδ(qz)d̃i,j(q, φ) (4.11)

with q=q(cosφ, sinφ, 0). Explicit expressions for the two-dimensional deformation fields d̃ij(q, φ)
of edge and screw dislocations are given in Section 3, cf. eqs. (3.10), (3.12).

Since the phonon wave vectors lie in the first Brillouin zone, |q′|, |q′′| ≤ qBZ, the dislocation
wave vector magnitude satisfies q = |q′− q′′| ≤ 2qBZ due to momentum conservation. The
coefficientsDi′j′k′

ijk depend on second- and third-order elastic constants as explained in Section 2.3.
Finally, we introduce the following short hand notation: ωs(q′)→ ωq′ , ei(q′, s)→ eq′i, ξq′s → ξq′

with ξq′s = âq′s+â†−q′s, and Γq′q′′ ≡ Γs′s′′(q′,q′′), i.e. in order to write equations more compactly
we use “superindices” q for the dependence on the polarization and the 3-momenta. Note that
the polarization indices are implicit. In the following we will denote phonon momenta by q′ and
q′′ while the momentum of a dislocation will be denoted by q.

We now derive an expression for the dissipation D starting from the probability per unit time
of scattering a phonon from state q′ to state q′′ [22, 26], Wq′q′′ = 8π

~2 |Γq′q′′ |2δ(ωq′ − ωq′′ − Ωq),
where Γq′q′′ is the dislocation-phonon vertex defined in (4.9) and Ωq = q · v. Multiplying Wq′q′′

by nq′ = (exp(~ωq′/kBT )−1)−1, the equilibrium phonon distribution function, gives the number
of transitions per unit time. Taking into account that an energy ~(ωq′−ωq′′) = ~Ωq is transferred
for every transition, one finds for the dissipation (energy dissipated per unit time per unit length
of a dislocation)

D = −8π
~
∑
q′,q′′

Ωq|Γq′q′′ |2nq′δ(ωq′ − ωq′′ − Ωq)

= 4π
~
∑
q′,q′′

Ωq|Γq′q′′ |2(nq′′ − nq′)δ(ωq′ − ωq′′ − Ωq) , (4.12)

where momentum conservation q = q′−q′′ is implicit so as to avoid clutter in the notation. The
same expression can be derived from the one-loop Feynman diagram depicted in Figure 3; see [25]
for details. Since Ωq is already linear in the dislocation velocity, lim

v→0
Γq′q′′ may be considered

as a lowest-order approximation for very small velocities. Indeed, this is what Al’shits et al.
consider in Ref. [22], computing Γ for a straight line and loop dislocation at zero velocity and
for an isotropic crystal; see also the review article [21]. Here we aim at pushing to higher
velocities and hence must use a v-dependent Γq′q′′ , i.e. eq. (4.9) with the displacement gradients
of (3.10), (3.12). For the elastic constants Di′j′k′

ijk we will, for now, use experimental values rather
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q

q′

q′ − q

q

Figure 3: The lowest order Feynman graph describing phonon wind: The top and bottom
lines represent phonon propagators with momenta q′ and q′′ = q′ − q respectively. The
vertices left and right depend on the phonon and dislocation wave vectors and are presently
denoted by Γq′q′′ .

than compute them from the crystal potential. In particular, we will specialize to the isotropic
approximation in the next section.

From (4.12) we obtain the drag coefficient for phonon wind in the continuum approximation3

B = D/v2 = 4π
~v2

qBZ∫
0

dq′ q′2

(2π)3

1∫
−1

d cos θ′
2π∫
0

dφ′
2qBZ∫
0

dq q

(2π)2

2π∫
0

dφ Ωq|Γq′,q′−q(q, φ)|2(nq′−q − nq′)

× δ(ωq′ − ωq′−q − Ωq) , (4.13)

with Ωq = qv|cosφ| and nq = (exp(~ωq/kBT ) − 1)−1. Once more, we have approximated the
sum over q′ by an integral over the first Brillouin zone, i.e.

∑
q′
→ V

∫
BZ

d3q′

(2π)3 , (4.14)

and subsequently expressed q′ in spherical coordinates: q′ = q′(sin θ′ cosφ′ê1 + sin θ′ sinφ′ê2 +
cos θ′ê3). Then choosing these coordinates such that θ′ is the angle from the direction of q, we
have

(q′ − q )2 = q2 + q′2 − 2qq′cos θ′ , (4.15)

and the delta function can be used to perform the integral over θ′, since ωq′−q is a function of
|q′−q |. This implies ê3 = q/q, and the basis vectors ê1,2,3 are therefore related to the Cartesian
ones via

ê3 = cosφ x̂ + sinφ ŷ , ê1 = − sinφ x̂ + cosφ ŷ , ê2 = ẑ , (4.16)
3 The integration of q ranges up to infinity because we modeled our dislocations in the continuum limit.

However, the integration range reduces to a finite value (q ≤ 2qBZ) by the momentum conserving delta function
because the magnitudes of the phonon wave vectors q′, q′′ are limited to the first Brillouin zone, see also Ref. [22].
Another subtlety concerns Ωq: Alshits defined this quantity without the absolute value. However, negative values
merely correspond to incoming and outgoing phonons exchanging their meaning and with some variable substi-
tutions under the integrals it is fairly easy to show that both cases, cosφ > 0, cosφ < 0, can be combined into
our expression (4.13).
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leading to

q′= q′

cos θ′ cosφ− sin θ′ cosφ′ sinφ
cos θ′ sinφ+ sin θ′ cosφ′ cosφ

sin θ′ sinφ′

 , q′− q = q′


(

cos θ′ − q
q′
)

cosφ− sin θ′ cosφ′ sinφ(
cos θ′ − q

q′
)

sinφ+ sin θ′ cosφ′ cosφ
sin θ′ sinφ′

 ,
(4.17)

which is clearly consistent with (4.15). We are now able to construct the corresponding polariza-
tion vectors, keeping in mind that the longitudinal polarizations are unit vectors parallel to the
respective momenta. Another useful relation which follows from completeness of the polarization
vectors,

∑
s e∗i (q′, s)ej(q′, s) = δij , is:

∑
s=1,2

e∗i (q′, s)ej(q′, s) = δij −
q′iq
′
j

q′2
,

∑
s=1,2

e∗i (q′− q, s)ej(q′− q, s) = δij −
(q′i − qi)(q′j − qj)

(q′ − q )2 , (4.18)

where we have chosen s = 1, 2 as the transverse polarizations. We thus find for |Γq′,q′−q|2 the
expression

|Γq′,q′−q(q, φ)|2 = ~2

16ρ2
0ωq′ωq′−q

∑
i,i′,j,j′,k,k′

l,m,n,l′,m′,n′

d̃k,k′(q, φ)d̃n,n′(q, φ)q′i′q′l′(q′− q)j′(q′− q)m′

× e∗i (q′, s′)ej(q′− q, s′′)el(q′, s′)e∗m(q′− q, s′′)Di′j′k′

ijk Dl′m′n′
lmn , (4.19)

where all sums go over x, y, z, although depending on whether an edge or a screw dislocation is
considered, different components of the deformation fields vanish, see Eqns. (3.10), (3.12).

In order to perform the integral over θ′ using the delta function, we make the following
variable substitution:

W (q, q′, θ′) = ωq′−q = ωs′′(q2 + q′2 − 2qq′cos θ′) , dW = ∂W

∂ cos θ′d cos θ′ . (4.20)

In addition, θ′ appearing in the Jacobi determinant and in the kinematic factors (4.19) is replaced
by the inverse function θ′(q, q′,W ), assuming it exists. For the drag coefficient, this leads to

B = ~π
4ρ2

0

qBZ∫
0

dq′ q′2

(2π)3

2qBZ∫
0

dq q2

(2π)2

2π∫
0

dφ
cosφ

v ωq′(ωq′ − Ωq)

(e ~(ωq′−Ωq)
kBT − 1

)−1

−
(
e

~ωq′
kBT − 1

)−1


×
Wmin∫
Wmax

dW

(
∂W

∂ cos θ′
)−1

δ(ωq′ − Ωq −W )
∑

i,i′,j,j′,k,k′

l,m,n,l′,m′,n′

e∗i (q′, s′)ej(q′− q, s′′)el(q′, s′)

× e∗m(q′− q, s′′)Di′j′k′

ijk Dl′m′n′
lmn d̃k,k′(q, φ)d̃n,n′(q, φ)

2π∫
0

dφ′ q′i′q
′
l′(q′− q)j′(q′− q)m′ , (4.21)

whereWmax = ωs′′((q+q′)2),Wmin = ωs′′((q−q′)2). Note that the only φ′-dependence in (4.13)
comes from the kinematic factors in (4.19). Thus the φ′-integral is independent of the dispersion

17



relation and can be done explicitly, as it is of the type

2π∫
0

dφ′ sinm φ′ cosn φ′ (4.22)

with m,n ≥ 0 and m + n ≤ 8 for all terms (since φ′ appears only within components of vector
q′i and the polarization vectors, each of which in turn appear at most to fourth power).

4.2 Interaction with Transverse and Longitudinal Phonons

In the isotropic case, we have the elastic constants of the form given in Section 2.3. For the
frequencies we then have three modes, one longitudinal, ωL(q), and two transverse, ωT(q). In
the continuum limit one may approximate these modes as

ωL(q) ≈ cL|q| = |q|
√

(λ+ 2µ)/ρ0 , ωT(q) ≈ cT|q| = |q|
√
µ/ρ0 . (4.23)

The underlying lattice is taken into account indirectly by cutting off the spectrum at some
limiting frequency (typically the Debye frequency) which is related to the finite lattice spacing.
One obvious shortcoming of this approximation (apart being a very crude linear approximation
of a more complicated spectrum dependent on the crystal structure), is that its derivative at the
zone boundary does not vanish; hence, it is a poor approximation to the true phonon spectrum at
high frequencies. Some improvement might be achieved by employing a sine function [27] instead
of this linear relation. However, in order to be consistent with the continuum approximation, we
will for now only consider the simplest case of the Debye approximation (4.23), leaving a more
thorough study of dispersion relations and their effect on the predictions for the drag coefficient
to future work.

Using the delta function (but not yet for integration), we may replace all occurrences of ωq′−q
in eq. (4.13) with ωq′ − Ωq in the integrand so that the only dependence on θ′ is in the q′i (and
related polarization vectors) with indices contracted with the elastic constants. Furthermore,
with s = 1,2,3 and c1 = c2 = cT, c3 = cL, ω1(q) = ω2(q) = ωT(q), and ω3(q) = ωL(q), we have 4

δ(ωs′(q′)− ωs′′(|q′− q|)− Ωq) = δ

(
cos θ′ − 1

2c2
s′′qq

′

(
(c2
s′′q

2 + (c2
s′′ − c2

s′)q′2 + 2cs′q′Ωq − Ω2
q

))

× |cs
′q′ − Ωq|
c2
s′′qq

′ Θ
(
2c2
s′′qq

′ −
∣∣∣(c2

s′′q
2 + (c2

s′′ − c2
s′)q′2 + 2cs′q′Ωq − Ω2

q

∣∣∣) , (4.24)

where Θ(x) is the step function following from cos θ′ ∈ [−1, 1]. (Here, it is of course trivially 1 due
to the delta function, but after the integration over cos θ′ it needs to be taken into account.) This
allows us to easily integrate cos θ′ in the expression for B, and the step function can subsequently
be translated into integral boundaries for the q integration. Furthermore, according to the delta
function above, ωs′(q′) − Ωq = ωs′′(|q′− q|) ≥ 0. In the case where s′ = s′′, this expression
simplifies considerably leading to

δ(ωs(q′)− ωs(|q′− q|)− Ωq) = |csq
′ − Ωq|
c2
sqq
′ δ

(
cos θ′ − 1

2c2
sqq
′

(
(c2
sq

2 + 2csq′Ωq − Ω2
q

))
×Θ

(
2c2
sqq
′ −

∣∣∣(c2
sq

2 + 2csq′Ωq − Ω2
q

∣∣∣) , (4.25)

4 Note that eq. (4.24) is valid only for the linear dispersion relation ωs(q) ≈ cs|q|.
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and some algebra finally leads to (cos θ′ − (v/cs)|cosφ)| ≥ 0, which further restricts the ranges
of the contributing angles. It has indeed been argued [22, 28] that the purely transverse yield
the dominating contribution at low velocities. Naively, this argument is based on the fact that
at low velocities, inverse powers of sound speed in the full expression lead to a suppression of
the longitudinal modes. We will verify this claim also for high velocities below.

Whenever s′ = s′′ it will be convenient 5 to change variables from q to the dimensionless
variable t:

t = 1
2c2
sqq
′

(
(c2
sq

2 + 2csq′Ωq − Ω2
q

)
= 1

2q′
(
1− β2

s cos2 φ
)
q + βs|cosφ| ,

dt = 1
2q′

(
1− β2

s cos2 φ
)
dq , t ∈ [βs|cosφ|, 1] . (4.26)

We have assumed a dislocation velocity below transverse sound speed, i.e. v < cT < cL, and
therefore βs = v/cs < 1 (s = 1, 2, 3). The upper bound (t ≤ 1) is due to the step function above.
Note that the delta function in (4.25) and the definition of t imply cos θ′ = t.

Considering first the purely transverse modes and introducing unit vectors q̂i = qi/q, q̂′i =
q′i/q

′, our isotropic drag coefficient reads 6

B = π~
4ρ2

0vc
3
T

qBZ∫
0

dq′

(2π)3

2π∫
0

dφ

2qBZ∫
0

dq q

(2π)2 |cosφ|
(

1

e
~

kBT
cTq′ − 1

− 1

e
~

kBT
(cTq′−vq|cosφ|) − 1

)

×
∑

i,i′,j,j′,k,k′

l,m,n,l′,m′,n′

d̃k,k′(q, φ)d̃n,n′(q, φ)
2π∫
0

dφ′
1∫
−1

d cos θ′ q′i′q′l′(q′− q)j′(q′− q)m′D
i′j′k′

ijk Dl′m′n′
lmn

×
(
δil −

q′iq
′
l

q′2

)(
δjm −

(q′j − qj)(q′m − qm)
(q′ − q )2

)
δ
(
cos θ′ − t(q)

)
= π~

2ρ2
0

qBZ∫
0

dq′ q′6

(2π)5

2π∫
0

dφ

1∫
βT|cosφ|

dt q̃|cosφ|

 1

e
~cT
kBT

q′ − 1
− 1

e
~cT
kBT

q′(1−βTq̃|cosφ|) − 1



×
∑

i,i′,j,j′,k,k′

l,m,n,l′,m′,n′

d̃k,k′(q, φ)d̃n,n′(q, φ)
βTc4

T
(
1− β2

T cos2 φ
) 2π∫

0

dφ′ q̂′i′ q̂
′
l′

(
q̂′j′ q̂

′
m′ − q̃ q̂j′ q̂′m′ − q̃ q̂′j′ q̂m′ + q̃2 q̂j′ q̂m′

)

×
(
δil − q̂′iq̂′l

)(
δjm −

(q̂′j − q̃q̂j)(q̂′m − q̃q̂m)
1 + q̃2 − 2tq̃

)
Di′j′k′

ijk Dl′m′n′
lmn , (4.27)

where we have eliminated q in favor of the dimensionless variable t:

q̃ := q(t)
q′

= 2(
1− β2

T cos2 φ
) (t− βT|cosφ|) . (4.28)

5 In fact, this variable substitution is only useful for the simplest case of a linear dispersion relation, and only
if the interaction is with purely transverse (or longitudinal) phonons, but not mixed.

6 The integration range of q is further restricted by the remaining delta function together with the range of
cos θ′, in particular q ≤ 2qBZ/(1 + βs cosφ) if cosφ > 0 and q ≤ 2qBZ otherwise. In the limit of zero dislocation
velocity, the integration range of q remains unchanged, i.e. q ≤ 2qBZ — cf. [22].

19



Since cos θ′ = t the components of the unit vector q̂′i = q′i/q
′ depend on t

q̂′i =

t cosφ−
√

1− t2 sinφ cosφ′
t sinφ+

√
1− t2 cosφ cosφ′√

1− t2 sinφ′

 . (4.29)

As remarked earlier, the integral over φ′ can also be done easily; see (4.22).
Due to the appearance of the two transverse projection operators in the last line of (4.27),

3a = l−m+ n
2 does not contribute to the interaction with purely transverse phonons. The reason is

that this term parametrizes three traces, aδii′δjj′δkk′ , leading to expressions like q′i(δil− q̂′iq̂′l) = 0,
see (2.31), (4.6). For the same reason, most terms proportional to b̃ = m − n

2 and λ (see (4.6),
(2.32) and (2.18)) drop out as well, the only surviving ones being those where the trace, δkk′ ,
hits an edge dislocation since d̃ii is nonzero only in the edge case, see (3.11). For these reasons,
the drag coefficient for screw dislocations interacting with purely transverse phonons depends
only on the two elastic constants µ, n, whereas dislocation drag for edge dislocations interacting
with purely transverse phonons depends on the four elastic constants λ, µ, m, and n.

If we insert eq. (3.10) or (3.12) for the displacement gradients (and hence neglect any cutoffs),
we observe that q′2d̃k,k′(q, φ)d̃n,n′(q, φ) = d̃k,k′(q̃, φ)d̃n,n′(q̃, φ), allowing us to evaluate the integral
over q′ in terms of Debye functions [29, 30]. These are defined as

Dn(x) =
x∫

0

yn

ey − 1dy = xn
(

1
n
− x

2(n+ 1) +
∞∑
k=1

B2kx
2k

(2k + n)(2k)!

)
, (4.30)

where |x| < 2π, n ≥ 1, and the coefficients B2k are Bernoulli numbers7. In particular we have
qBZ∫
0

dq′ q′4

 1

e
~cT
kBT

q′ − 1
− 1

e
~cT
kBT

q′(1−βTq̃|cosφ|) − 1


=
(
kBT

~cT

)5
D4

(
~cT
kBT

qBZ
)
−
D4
(

~cT
kBT

(1− βTq̃|cosφ|)qBZ
)

(1− βTq̃|cosφ|)5


=
(
kBT

2~cT

)
(qBZ)4

∞∑
k=0

B2k
(

~cT
kBT

qBZ
)2k (

1− (1− βTq̃|cosφ|)2k−1
)

(k + 2)(2k)! . (4.31)

The series representation of these Debye functions converges only for ~cTqBZ < 2πkBT , which
is automatically fulfilled if T is greater than the Debye temperature.

Taking only the leading order term of (4.31), we then find for the drag coefficient in the high
temperature limit

B ≈ πkBT

8ρ2
0

(qBZ)4

(2π)5

2π∫
0

dφ

1∫
βT|cosφ|

dt
q̃2 cos2 φ

(1− βTq̃|cosφ|)

×
∑

i,i′,j,j′,k,k′

l,m,n,l′,m′,n′

d̃k,k′(q̃, φ)d̃n,n′(q̃, φ)
c5

T
(
1− β2

T cos2 φ
) 2π∫

0

dφ′ q̂′i′ q̂
′
l′

(
q̂′j′ q̂

′
m′ − q̃ q̂j′ q̂′m′ − q̃ q̂′j′ q̂m′ + q̃2 q̂j′ q̂m′

)

×
(
δil − q̂′iq̂′l

)(
δjm −

(q̂′j − q̃q̂j)(q̂′m − q̃q̂m)
(1− βTq̃|cosφ|)2

)
Di′j′k′

ijk Dl′m′n′
lmn +O(1/(kBT )) . (4.32)

7 The first four appearing in the sum of eq. (4.31) are B0 = 1, B2 = 1/6, B4 = −1/30, and B6 = 1/42.
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However, since we are interested in room temperature which is of the same order of magnitude
as the Debye temperature for many materials, we will perform the q′ integral numerically, giving
us better accuracy.

Before we do so, however, let us briefly remark on the limit v → 0, as this limit allows us to
compare to earlier work. In this case q̃ → 2t, according to (4.28), which leads to

lim
v→0

B ≈ πkBT

8ρ2
0

(qBZ)4

(2πcT)5

2π∫
0

dφ

1∫
0

dt cos2 φ

×
∑

i,i′,j,j′,k,k′

l,m,n,l′,m′,n′

lim
v→0

d̃k,k′(1, φ)d̃n,n′(1, φ)
2π∫
0

dφ′ q̂′i′ q̂
′
l′(q̂′j′ − 2tq̂j′)(q̂′m′ − 2tq̂m′)

×
(
δil − q̂′iq̂′l

) (
δjm − (q̂′j − 2tq̂j)(q̂′m − 2tq̂m)

)
Di′j′k′

ijk Dl′m′n′
lmn +O(1/(kBT )) , (4.33)

and inserting the zero velocity limits of the dislocation displacement gradients of Section 3 (with
magnitudes q replaced by 1), the expression above can be easily integrated analytically, since
upon substituting t = cos θ′ all three remaining integrals only involve powers of sine and cosine
(see (4.29)). We will come back to this point later where we will also include next to leading
order terms.

Next, consider the drag coefficient (again in the high temperature expansion) for the inter-
action of dislocations with purely longitudinal phonons. In this case, (4.32) is replaced by

B ≈ πkBT

8ρ2
0

(qBZ)4

(2π)5

2π∫
0

dφ

1∫
βL|cosφ|

dt
q̃2 cos2 φ

(1− βLq̃|cosφ|)

×
∑

i,i′,j,j′,k,k′

l,m,n,l′,m′,n′

d̃k,k′(q̃, φ)d̃n,n′(q̃, φ)
c5

L
(
1− β2

L cos2 φ
) 2π∫

0

dφ′ q̂′i′ q̂
′
l′

(
q̂′j′ q̂

′
m′ − q̃ q̂j′ q̂′m′ − q̃ q̂′j′ q̂m′ + q̃2 q̂j′ q̂m′

)

×
(
q̂′iq̂
′
l

)((q̂′j − q̃q̂j)(q̂′m − q̃q̂m)
(1− βLq̃|cosφ|)2

)
Di′j′k′

ijk Dl′m′n′
lmn +O(1/(kBT )) , (4.34)

where now q̃ = q(t)/q′ = 2 (t− βL|cosφ|) /
(
1− β2

L cos2 φ
)
. We see that, except inside the ex-

pressions for the dislocation displacement gradients, all cT have been replaced by cL, leading to
the naive conclusion that due to the factor 1/c5

L the drag coefficient in the low-velocity regime
is suppressed by (cT/cL)5, confirming what was pointed out in [28]. However, one must also
take into account that other elastic constants are contributing due to the transverse polarization
vectors being replaced by longitudinal ones, and this can offset the suppression. In the high ve-
locity regime the divergent factor coming from the phonon distribution function also had its cT
dependence replaced by cL, and thus we expect the transverse phonons to dominate as v → cT.
In particular, in going back to eq. (4.21) we notice that the phonon with polarization index s′
is the one leading to divergent terms as v → cT.

4.3 Drag Coefficient for v → cT

The dominant terms in the drag coefficient as v → cT arise from

• the interaction with transverse phonons,
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• elastic constants n and µ since screw displacement gradients are traceless and the trace of
the edge dislocation displacement gradient does not diverge as v → cT, see (3.11),
• component d̃z,x in the screw case and d̃y,x in the edge case, the latter dominating over the

former,
• and edge dislocations are more divergent in their displacement gradient field as v → cT

than screw dislocations due to the above assessment, see (3.10), (3.12).

In eq. (4.27) (for s = T) for the isotropic drag coefficient we see that the factor 1/(1 −
β2

T cos2 φ) diverges at cosφ = ±1 as βT approaches 1. More powers of this factor come from the
deformation fields (3.10) and (3.12). At the same time, the integration range of t shrinks to zero8

obscuring the actual degree of divergence. In Appendix B we therefore analyze the divergence
using an alternative set of variables. In the case of screw dislocations, the component d̃z,y does
not contain a divergence due to the presence of γ−2

T . Hence, in contrast to edge dislocations,
screws only contribute factors of sinφ/(1−β2

T cos2 φ) which diverge much slower than cosφ/(1−
β2

T cos2 φ) as φ → 0 (or π) and βT → 1. Edge dislocations contribute both types of terms and
hence lead to steeper curves as βT approaches one.

The calculations of the drag coefficient for transverse phonons in Appendix B are carried
out in Cartesian coordinates rather than in spherical coordinates. The focus is on the limiting
behavior of B as v → cT. In the case of screw dislocations scattering transverse phonons we
conclude that the drag coefficient has no divergence and

B ∝ b2kBTq
4
BZ

cT
. (4.35)

In contrast, for the case of edge dislocations scattering transverse phonons the drag coefficient
is divergent in the limit v → cT and

B ∼ 1√
1− v2/c2

T

. (4.36)

MD simulation results of Refs. [31, 32] indicate that screw dislocations can accelerate into
the transonic regime, consistent with a convergent drag coefficient which we find here. Edge
dislocations, on the other hand, can reach transonic speeds only by a “jump” according to those
simulations. This jump indicates a sudden change, possibly in shape of the dislocation [33], and
cannot be described by our present model of dislocation drag. Hence, the divergence we find
here for B of edge dislocations only reflects the behavior prior to the observed jump into the
transonic regime, i.e. where the dislocation velocity is still below transverse sound speed. Due to
the limited resolution in the MD simulation results of [31, 32], it is as of yet unclear how close
to the limiting velocity this jump happens [33].

A detailed stability analysis of dislocations in isotropic as well as cubic crystals was recently
carried out [33]; in the isotropic limit an analytic line tension analysis showed that straight edge
dislocations become unstable as they approach transverse sound speed. For this reason, as well
as the fact that linear elasticity theory breaks down close to cT (see Figures 1, 2), we show
numerical results for the drag coefficient only up to 90% transverse sound speed in the next
section.

Note that “relativistic” factors like 1/
(
1− β2

T
)m with some exponent 1/2 ≤ m ≤ 4 have

appeared in the past in the literature as “correction” factors for the drag coefficient B. However,
8 Note that no further poles come from the Debye functions, see (4.31) with (4.28).
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these are usually put in by hand and thus seem rather arbitrary — see e.g. the discussion
in [34] and references therein. Here, we have derived the general behavior from first principles
and see that several terms are necessary to adequately fit the true curves; see eq. (5.1) below.
Furthermore, we remark that we expect the divergences at βT → 1 to be resolved by generalizing
the theory from linear to non-linear elasticity.

5 Results for Transverse Phonons
In this section we summarize the results of our computations of the drag coefficient in the
isotropic approximation for polycrystalline metals whose grains are either face-centered cubic
(fcc) or body-centered cubic (bcc). The effective isotropic elastic constants that we use as input
data are assembled in Table 1 and were taken from Refs. [17, 35, 36]. Section 2.3 explains how
the Lamé and Murnaghan constants are related to the Di′j′k′

ijk appearing in our drag coefficient
(4.27). The unit cell volumes Vc = a3 (resp. lattice parameters) were taken from Ref. [37, Sec.
12].

Al (fcc) Cu (fcc) Fe (bcc) Nb (bcc)
a[Å] 4.05 3.61 2.87 3.30

ρ0[kg/m3] 2700 8960 7870 8570
λ[GPa] 58.1 105.5 115.5 144.5
µ[GPa] 26.1 48.3 81.6 37.5
l[GPa] −143± 13 −160± 70 −170± 40 −610± 80
m[GPa] −297± 6 −620± 10 −770± 10 −220± 30
n[GPa] −345± 4 −1590± 20 −1520± 10 −300± 20

Table 1: We list the experimental values used in the computation of the drag coefficient: The
lattice parameters a and densities ρ0 were taken from Ref. [37, Sec. 12]. The Lamé constants
were taken from Refs. [17], [38, p. 10]. The Murnaghan constants for Cu and Fe were taken
from [35], those for Al were taken from Reddy 1976 as reported by Wasserbäch in Ref. [36],
and those for Nb were finally taken from [39]. Uncertainties (as given in those references)
are listed as well. For the unit cell volume we use Vc = a3, and b = a/

√
2 for fcc metals and

b = a
√

3/2 for bcc metals (see Refs. [40] and [11, Sec. 9] for a discussion of Burgers vectors
in various crystals).

In particular, we consider the interaction with transverse phonons (i.e. s = T, neglecting
s = L for now), for the metals listed in Table 1, i.e. considering the cutoff-free interaction with
transverse phonons within the Debye approximation at room temperature. After performing
the integral over φ′ analytically using (4.22), we solve the remaining three integrals of (4.27)
numerically (with Mathematica). The resulting drag coefficients for edge and screw dislocations
(using the deformation fields of Section 3) are plotted in Figures 4 and 5.

The predominant sources of uncertainty at the moment are the uncertainties in the elastic
constants and not knowing which size and shape to take for the dislocation core cutoff (which
can significantly affect the magnitude and shape of the B(v) curve unless it is much smaller
than a Burgers vector).

From Figures 4 and 5 we see that the drag coefficient is not very sensitive to the dislocation
velocity in the regime where βT � 1, and as pointed out above the exact shape of the curve
(albeit not its general behavior) is somewhat sensitive to the cutoff and the elastic constants. Our
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Figure 4: The drag coefficient from phonon wind for edge dislocations in various metals
in the Debye approximation with zero dislocation core size (i.e. no cutoff), with isotropic
second and third order elastic constants from Table 1. Three integrals (over t, φ, q′) were
done numerically at T = 300K taking into account only the interaction with transverse
phonons. Furthermore, the numerical results are overlain with least-squares-fitted curves
(dashed lines) of the form given in eq. (5.1) with coefficients from Table 2.

curves start at βT = 0.01, i.e. around the speed where the dislocation velocity typically becomes
linearly dependent on the applied stress [2], hence the motion can be described as “viscous”. (At
significantly lower velocities, experiments typically find a power law dependence, v ∝ σm.) At
higher velocities the drag coefficient increases rapidly with velocity, consistent with experiments
done in the velocity regime 0.1 < βT < 0.5 for LiF crystals [41], but not with other experiments
done up to βT < 0.7 for NaCl crystals [42] (the latter have exhibited a linear stress-velocity
dependence even in this regime).

At around half transverse sound speed, the drag coefficient starts to grow with dislocation
velocity. Close to sound speed this growth becomes very steep (at least for edge dislocations),
but this might signal the breakdown of the present theory rather than be an actual effect (which
is why the figures are displayed only up to 90% sound speed). We will need experimental data
and/or MD simulations to determine exactly how close to transverse sound speed the current
theory remains valid.

All curves shown in Figures 4 and 5 above can be fitted quite accurately using functions of
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Figure 5: The drag coefficient from phonon wind for screw dislocations in various metals in
the Debye approximation with zero dislocation core size (i.e. no cutoff) and with isotropic
second- and third-order elastic constants from Table 1. Once more, three integrals (over t,
φ, q′) were done numerically at T = 300K taking into account only the interaction with
transverse phonons. Again, the numerical results are overlain with least-squares-fitted curves
(dashed lines) of the form given in eq. (5.1) with coefficients from Table 2.

the form

Be(βT) ≈ Ce
0 + Ce

1βT + Ce
2β

2
T + Ce

3 log
(
1− β2

T

)
+ Ce

4

 1√
1− β2

T

− 1

 ,

Bs(βT) ≈ Cs
0 + Cs

1βT + Cs
2β

2
T + Cs

3β
4
T + Cs

4β
16
T , (5.1)

for edge (Be) and screw (Bs) dislocations. The forms of these functions were motivated by
the asymptotic behavior as βT → 1 in accordance with Subsection 4.3 and the discussion in
Appendix B together with the next-to-leading-order term in the small-velocity expansion of eq.
(5.3) below. Additional polynomial powers in βT were needed to get good fits at intermediate
velocities. Explicit values for the coefficients Ce/s

0-3 for edge/screw dislocations for the metals
shown above are easily computed using least squares fits9, and are given in Table 2. The resulting
curves are overlain with the numerical data in Figures 4, 5.

Comparing our results (in the low velocity regime without any cutoff, cf. Table 1) to exper-
iments and MD simulations, we note that

• Al (fcc aluminum) is below the range of experimental values of ∼ 0.02mPas in [43] and
∼ 0.06mPas in [44], and also below MD simulations (∼ 0.01mPas for edge and∼ 0.02mPas

9 The best fit was achieved by using the data up to 85%cT, and in the edge case fitting the log of the data.
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Al (fcc) Cu (fcc) Fe (bcc) Nb (bcc)
Ce

0 0.0044 0.0414 0.0186 0.0024
Ce

1 -0.0044 -0.0470 -0.0197 -0.0035
Ce

2 0.0025 0.0233 0.0110 0.0030
Ce

3 0.0070 0.1032 0.0458 0.0052
Ce

4 0.0114 0.1809 0.0783 0.0078
Cs

0 0.0041 0.0573 0.0261 0.0039
Cs

1 -0.0069 -0.0946 -0.0425 -0.0065
Cs

2 0.0047 0.0667 0.0289 0.0043
Cs

3 -0.0001 0.0008 0.0004 -0.0005
Cs

4 0.0018 0.0285 0.0122 0.0013
Be 0.0044 0.0409 0.0184 0.0024
Bs 0.0041 0.0567 0.0259 0.0038

Table 2: Fitting parameters Ce
m/Cs

m for edge/screw dislocations in units of mPas. In the
last two lines we report (again in units of mPas) the numerically computed results for the
drag coefficient at 1% sound speed, i.e. βT = 0.01.

for screw dislocations in [45]),
• Cu (fcc copper) is well within the range of experimental values of ∼ 0.0079mPas in [46],
∼ 0.02mPas in [47, 48], ∼ 0.065mPas (for both edge and screw dislocations) in [49],
∼ 0.07mPas in [50], and ∼ 0.08mPas in [51],
• Fe (bcc iron) is lower than the experimental values of ∼ 0.34mPas for edge and ∼

0.661mPas for screw dislocations reported in [52], as well as the result of MD simula-
tions of ∼ 0.26mPas for screw dislocations reported in [53],

Unless we have stated explicitly otherwise, the experimental values we compare to are either of
mixed edge/screw type or unknown.

Temperature and pressure dependence

All results above were computed for zero pressure and room temperature, i.e. 300K, because
the elastic constants we used were measured at this temperature; see Table 1. From eq. (4.31)
and eq. (4.35) we see that the drag coefficient grows roughly linearly with T at sufficiently high
temperatures. In fact, for temperatures above the Debye temperature, the equilibrium phonon
distribution functions may be expanded as

(nq′−q − nq′) ≈
kBTΩq

~ωq′ωq′−q
− ~Ωq

12kBT
+O

(
1/(kBT )3

)
, (5.2)

even before making use of the linear dispersion relation. Clearly the linear temperature depen-
dence is thus independent of the explicit form of ωq′ .

However, with increasing T , the elastic constants will also change; this introduces an addi-
tional temperature dependence into the phonon wind contribution to the drag coefficient. Kras-
nikov et al. [34] claim (based on MD simulations) that the temperature dependence of the drag
coefficient B receives a fourth power correction at very high temperatures, i.e. B(T )/B(Θ) ∼
T/Θ + 0.077(T/Θ)4 where Θ is the Debye temperature. At this point, however, it is unclear
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whether the temperature dependence of the elastic constants can account for this change, and
also if the fourth power correction represents the true temperature behavior of the phonon wind.
We will investigate the temperature dependence of the drag coefficient further in a future work.
For now, we just mention that the shear modulus can be modeled by a linearly decreasing func-
tion with temperature [1, 54, 55], meaning that those terms which are proportional to µ or µ2 in
the drag coefficient B will not grow as T 4, and it is unclear whether the Murnaghan constants
will lead to this behavior.

We also postpone the derivation of the pressure dependence of the phonon wind to future
work.

Approximation for small velocity and large temperature
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Figure 6: The drag coefficient from phonon wind for edge dislocations in various metals,
overlain with the small velocity (large temperature) approximation of eq. (5.3), (5.4).

Let us go back to eq. (4.27) for the drag coefficient in the isotropic approximation. Since
most applications involve temperatures around and above the Debye temperature, we use the
temperature expansion (4.31) up to next-to-leading order. Upon expanding (up to next-to-
leading order) for small dislocation velocities (βT � 1), we may compute the remaining integrals
analytically, and can compare the leading-order term to previous work such as [22]. Additionally,
we drop the mixed terms proportional to β2

T/(kBT ), since they are small compared to the others
for large T and small βT. In this case we find for the interaction of edge and screw dislocations
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Figure 7: The drag coefficient from phonon wind for screw dislocations in various metals,
overlain with the small velocity (large temperature) approximation of eq. (5.3), (5.5).

with transverse phonons (i.e. s = T):

B ≈ b2

5(8µ)2

([
kBT

3√3
(
π
2
) 2

3

cTV
4
3c

− π2cT~2

6kBTV 2
c

]
f0(λ, µ,m, n)

− βT
π

[
kBT

3√2
(
π
3
) 2

3

cTV
4
3c

− π2cT~2

6kBTV 2
c

]
f1(λ, µ,m, n) + β2

T
kBT

(
9π
16

)2
3

7cTV
4
3c

f2(λ, µ,m, n)
)
, (5.3)

where the coefficients f0,1,2 depend only on the elastic constants λ, µ, m, n (not l), and their
explicit form depends on whether we consider edge or screw dislocations. In particular, for edge
dislocations the coefficients read

f e
0(λ, µ,m, n) =

[
516(2µ)4+ 165λ2n2 + 16µ2(370λ2 + 151m2 + 274λm− 44mn + 15n2 + 119λn

)
+ 96µ3(133λ+ 64m + 4n) + 2λµn(764λ+ 76m + 141n)

]
/
[
84(λ+ 2µ)2] ,

f e
1(λ, µ,m, n) =

[
2µ2

(
798λ2 + 6(8m)2 + 8m(42λ− 19n) + 51n2 + 296λn

)
+ 183(2µ)4 + 111λ2n2

2
+ 16µ3(235λ+ 92m + 11n) + 2λµn(206λ− 36m + 61n)

]
/
[
5(λ+ 2µ)2] ,
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f e
2(λ, µ,m, n) =

[
4µ3

(
6933(4λ)2 + 2952(4m)2 + 520λ(102m− 7n)− 22076mn + 3977n2

)
+ 2λµ2

(
1969(4λ)2 + 8486(2m)2 + 4m(1676λ− 8673n) + 9951n2 + 6708λn

)
+ 4λ2µn(2661n− 38λ− 4540m) + 96µ4(9021λ+ 3260m− 259n)

+ 18814(2µ)5 + 1411λ3n2
]
/
[
198(λ+ 2µ)3] , (5.4)

whereas for screw dislocations they compute to

f s
0(λ, µ,m, n) = 1

7

(
33(2µ)2 + 62µn + 131

12 n2
)
,

f s
1(λ, µ,m, n) = 41(2µ)2 + 76µn + 27

2 n2 ,

f s
2(λ, µ,m, n) = 1

11

(3635(2µ)2

3 + 2202µn + 1457n2

4

)
. (5.5)

The simpler structure in the screw case is partly due to the deformation field depending only on
cT, whereas the deformation field for edge dislocations also includes terms depending on cL; see
(3.10), (3.12). In fact, in order to arrive at (5.4) we used the relation cL = cT

√
λ+2µ
µ , cf. (4.23).

Additionally, the coefficients in the screw case depend only on µ and n. Notice that the first
term in (5.3) qualitatively agrees with 10 Ref. [22], albeit differing in some numerical coefficients
within f e,s

0 . This discrepancy can be traced back to the tensor of third order elastic constants
used in that paper which seems to be incorrect.

Plugging in the experimental data of Table 1, we may compare with our numerical results.
Figures 6, 7 show good agreement of (5.3) below 40%–50% transverse sound speed (depending
on the metal). Finally, Table 3 lists the (dimensionless) values of the coefficients f e,s

0,1,2/(8µ)2 for
various metals.

Al (fcc) Cu (fcc) Fe (bcc) Nb (bcc)
f e

0/(8µ)2 2.877 15.88 4.353 0.468
f e

1/(8µ)2 14.29 86.72 22.84 3.392
f e

2/(8µ)2 12.62 50.85 14.84 5.045
f s

0/(8µ)2 2.723 22.15 6.172 0.747
f s

1/(8µ)2 23.72 192.1 53.63 6.562
f s

2/(8µ)2 55.94 464.6 128.1 14.98

Table 3: List of coefficients derived from second- and third-order elastic constants for various
metals, as they appear in the small velocity expansion of the drag coefficient, eq. (5.3). All
values in this list are dimensionless.

6 Conclusion and Outlook
In this paper we have studied the velocity dependence of the dislocation drag coefficient for
dislocation velocities v in the range 0.01cT < v < cT where cT is the transverse sound speed.

10 Though here, we removed the cutoff for the dislocation core and expanded for large temperature. Furthermore,
in order to compare the two expressions we note that the wave vector cutoff denoted in [25] by kD is related to
the unit cell volume, kD ∝ V −1/3

c .
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In this regime the dominant contribution to dislocation drag is the dissipative interaction with
phonons, i.e. the phonon wind. Although the currently employed model breaks down at v = cT,
we were able to make predictions for the velocity dependence of the drag coefficient B(v) at
dislocation speeds below this critical value. Our main results are captured in Figures 4 and 5
for edge and screw dislocations respectively, for eight different metals chosen for their simple
lattice structure and available data for their third-order elastic constants at room temperature.
We computed B(v) in the range v/cT ∈ [0.01, 0.08] and can represent all results by simple fitting
functions of the form eq. (5.1) with four fitting parameters. Surprisingly — considering the highly
non-trivial dependence on v — the drag coefficient turns out to be nearly constant below 40%
transverse sound speed for most of the metals considered here. Furthermore, we have compared
our results to experimental values and MD simulation results where these are available, i.e. in
the low-velocity regime, i.e. v/cT ∼ 0.01. We found good agreement for copper, while our results
for aluminum and iron are lower in the low-velocity regime. Additional experimental data on
third-order elastic constants is necessary to improve our predictions and to compute the drag
coefficient for other materials.

Our future work will include calculating

• the temperature and density dependence of B,

• the drag coefficient for near-sonic and possibly supersonic dislocation speeds,

• and B(v) for more complicated lattice structures. The latter will necessitate deviations
from isotropy, the inclusion of optical phonons and hence more sophisticated dispersion
relations to capture the impact of the phonon spectra on the drag coefficient.
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A Fourier Transform of Displacement Gradients and Cutoffs
Dislocations have finite core sizes r0 and in a dense ensemble of dislocations the strain fields
are screened away at distances of order the mean distance between dislocations α. Hence, these
parameters could be used to cut off the Fourier integrals: Defining

d̂i,j(q, φ, r0, α) =
α∫

r0

drr

2π∫
0

dθdi,j(r, θ)e−iqr cos(θ−φ) , (A.1)

we get (for βT,L → 0) the following general type of integral

α∫
r0

dr

2π∫
0

dθ

π

(
A sin θ +B cos θ

)
e−iqr cos(θ−φ) = −2i

q

[
A sinφ+B cosφ

] qα∫
qr0

dx J1(x)

= −2i
q

[
A sinφ+B cosφ

]
(J0(qr0)− J0(qα)) (A.2)
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where Jn(x) denotes the Bessel function of the first kind [56]. In the limit α → ∞ and r0 → 0
we have (J0(qr0)− J0(qα))→ 1. It then follows that

∞∫
0

dr

2π∫
0

dθ

π

(
A sin θ +B cos θ

)
e−iqr cos(θ−φ) = −2i

q

[
A sinφ+B cosφ

]
, (A.3)

or in Cartesian coordinates
∞∫
−∞

∞∫
−∞

dxdy

π

(
Ay +Bx

)
x2 + y2 e−i(xqx+yqy) = −2i

q2
x + q2

y

[
Aqy +Bqx

]
. (A.4)

From these results we may deduce the Fourier transform of the expressions with non-vanishing
β, namely
∞∫
−∞

∞∫
−∞

dxdy

π

(
Ay +Bx

)
x2 + γ−2y2 e

−i(xqx+yqy) = −2i
γ−2q2

x + q2
y

[
Aγqy + Bqx

γ

]
= −2i

[
Aγ2 sinφ+B cosφ

]
qγ (1− β2 cos2 φ) ,

(A.5)

where we simply rescaled y and qy to arrive at the same type of integral as before. Note, that
this trick fails if we keep the cutoffs in which case the integral over θ cannot easily be done.
Nonetheless, in the limits of infinitesimal dislocation core size and infinite separation between
dislocations we arrive at (3.10) for edge dislocations and at (3.12) for screw dislocations. Taking
the limits r0 → 0 and α → ∞ greatly simplified the expressions, and we will investigate below
how good an approximation this is. In any case, since all expressions converge, the cutoffs are
not necessary from a mathematical point of view.

On the effect of cutoffs

The rescaling trick used for (A.5) above entailed an integral
∫
dR where R2 = x2 +γ−2y2. Thus,

in changing the size of the cutoffs in the y direction to match the current symmetry leads to
α̃∫̃
r0

dR where r̃0 = r0
√

1− β2 sin2 θ and likewise α̃ = α
√

1− β2 sin2 θ. The result for the Fourier

transform is then to be multiplied by(
J0
(
qr̃0

√
1− β2 cos2 φ

)
− J0

(
qα̃
√

1− β2 cos2 φ
))

,

which in the limit r̃0 → 0, α̃→∞ tends to 1. Note that all factors of β appearing here are either
βL or βT depending on which of the two appeared next to y before Fourier transforming, i.e.
this simple result follows from choosing two different cutoffs (with βT or βL) for different terms
in the deformation field. For small velocities, however, the effect of this further simplification is
small.

On the other hand, since we are merely interested in a rough estimate of the magnitude of
possible corrections depending on the magnitudes of r0 and α, the approximations above are
sufficient. q will be integrated from 0 to qBZ, so taking the mean value of qBZ/2 and neglecting
the velocity dependence (β → 0), we have

(
J0
(
qBZr0/2

)
− J0

(
qBZα/2

))
. Let us write both cutoffs
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in units of Burgers vectors, r̂0 = r0/b, α̂ = α/b. Then our Bessel functions read

(
J0
(
A

3√6π2r̂0/4
)
− J0

(
A

3√6π2α̂/4
))
≈
(

1−
(
0.97Ar̂0

)2
4 +O(r̂4

0)
)

−
(√

2(
0.97Aπα̂

) cos
(
0.97Aα̂+ π/4

)
+O(1/α̂)

)

where A =
√

2 for fcc metals and A =
√

3 for bcc metals. This expression leads to corrections
from either cutoff of the order of (or less than) 10% for r0 < b/3 and α > 50b. In fact, some
references (e.g. [11, 57]) argue that the cutoff r0 should be of the order of 30% of a Burgers
vector. Furthermore, α of the order of 50 Burgers vectors or less would correspond to very high
dislocation densities. Thus, for most cases we do not expect a significant impact on the result
for the drag coefficient from phonon wind by taking the limits r0 → 0 and α→∞. However, as
the dislocation velocity approaches the transverse sound speed, this assessment will no longer
be true — see our discussion in Section 3. Therefore, we intend to study more thoroughly the
effect of the dislocation core on the drag coefficient in future work.

B Drag Coefficients for Transverse Phonons as v → cT

B.1 Screw Dislocations Interacting with Transverse Phonons

The drag coefficient may be written

B = D

v2 = 4π
~v2

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d2q

(2π)2 (2π)3 δ3(k′ − k− q
)
×

×
∑
ss′

δ
(
ωs′(k′)− ωs(k)− q · v

)
(q · v)

[
n(ωs(k))− n(ωs′(k′)

] ∣∣∣Γss′(k,k′)∣∣∣2 (B.1)

where k = q′′ and k′ = q′ are the momenta of the incoming and scattered phonon respectively
and q = k′ − k is the Fourier transform variable of the dislocation, v is its velocity, ωs(k) is
the energy of a phonon with polarization s, n(ω(k)) is the thermal equilibrium Bose-Einstein
distribution function for that energy, and Γss′ is a direction-dependent matrix element squared
of the third order Hamiltonian vertex, given by (4.9), with s, s′ labeling the initial and final
phonon polarization states (transverse T or longitudinal L), respectively.

We choose to use Cartesian coordinates here because the velocity of the dislocation v selects a
direction, i.e. the x̂ direction. Since the infinitely extended dislocations are assumed independent
of z, we also have qz = 0 and hence k′z = kz. Second, we take one kind of dislocation (edge or
screw) at a time, and one pair of phonon polarizations TT , LL, or TL at a time in order to
analyze the limit v → cT, cL separately, where the Fourier transforms of the dislocation profiles
become singular. For the sake of brevity, we discuss in detail only the simplest case of screw
dislocations interaction with transverse phonons (which dominate over the longitudinal ones).
Third, we put aside the polarization term involving the Γss′ at first, and just look at the degree
of divergence/convergence of the remaining integrals as v → c, and after that examine the effect
of the vertex part for various cases of polarizations and kind of dislocation.

In the Cartesian coordinates just described, we perform the k′ integral first by using the
δ-function, so that

k′z = kz k′x = kx + qx k′y = ky + qy (B.2)
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and then perform the kz integral by using the final δ function of energy conservation. Also,
we restrict our present calculation to the case where both polarizations are either transverse
or longitudinal, but not mixed. In this case, we may replace ωs′ → ωs under the sum, and to
avoid notational clutter we drop the polarization subscripts from the phonon energies for the
remainder of this appendix. In this way (B.1) reduces to

B = 2
~v
∑
ss′

∫
d2k⊥
(2π)2

∫
d2q

(2π)2 qx

∣∣∣∣∂∆E
∂kz

∣∣∣∣−1 [
n(ω(k))− n(ω(k′)

] ∣∣∣Γss′(k,k′)∣∣∣2
C

(B.3)

which are now two two-dimensional integrals in the (x, y) plane perpendicular to the ẑ axis. In
(B.3) the condition C is shorthand for the condition (B.2) on the components of k′ which should
be solved for and substituted, together with the energy conservation condition

∆E ≡ ω(k′)− ω(k)− qxv = 0 (B.4)

to be set to zero after evaluating the Jacobian factor
∣∣∣∂∆E
∂kz

∣∣∣−1
in (B.3). To evaluate that Jacobian,

we use the simple linear phonon dispersion relation

ω(k) = c|k| = ck = c
√
k2
x + k2

y + k2
z (B.5)

for the phonons (with c = cT or c = cL for transverse or longitudinal phonons respectively), and

∂∆E
∂kz

= c2kz
ω(k′) −

c2kz
ω(k) = − c2qx v kz

ω(k′)ω(k) (B.6)

after the condition ∆E = 0 is used. Thus we obtain

B = 2
~v2

∑
ss′

∫
d2k⊥
(2π)2

∫
d2q

(2π)2
qx
|qx|

ω(k)ω(k′)
c2|kz|

[
n(ω(k))− n(ω(k′)

] ∣∣∣Γss′(k,k′)∣∣∣2
C
. (B.7)

In examining potential divergences the first key point is to analyze the |kz| denominator in (B.7),
where we recall that kz must be solved for by using the condition ∆E = 0. Using also the linear
phonon dispersion relation (B.5) we obtain after some algebra

kz(k⊥,q) = ± 1
2qxβ

√[
q2
x (1− β2) + q2

y + 2k⊥ · q
]2
− 4q2

x β
2 k2
⊥ (B.8)

with β = v/c. Note that (B.8) has solutions for real kz if and only if the argument of the square
root is non-negative, which constitutes the main constraint we have to deal with and particularly
if |kz| can approach zero, which may lead to a divergence in (B.7).

Now also observe that the large momentum end of the integrals in (B.7) will be cut off in
one of two ways. For low temperatures kBT � ~cqBZ the thermal distribution function will fall
exponentially and the momentum integrals will therefore be cut off by T . On the other hand,
for high temperatures kBT � ~cqBZ, the Bose-Einstein thermal distribution can be replaced by
its small ω limit, i.e.

n(ω) = 1
exp (~ω/kBT )− 1 →

kBT

~ω
for ω < cqBZ � kBT/~ (B.9)

in which case the momentum integrals will be cut off by qBZ at the edge of the Brillouin zone.
Since it is in this latter limit that the short distance singularities of the dislocation are probed

33



by high velocity motion of the dislocation approaching the speed of sound, we will examine this
high temperature limit most closely and use the approximation (B.9). One should then go back
at the end to be sure that this presumption is actually correct.

The first case we looked at carefully was that of screw dislocations and transverse phonons,
since this is the case that was the most sensitive to the v → c limit with c = cT here, based on the
Fourier transforms for the moving screw dislocation given in (3.12). For the screw dislocation the
d̃zx component is dominant because the only other non-zero component d̃zy in (3.12) contains a
factor of γ−2

t = 1− (v/cT)2 which is squared again in B and goes to zero as v → cT. Note that
the angular dependence in (3.12) does indicate a more severe collinear divergence at φ = 0 for
d̃zy vs. d̃zx, so it is not obvious without detailed calculation which is dominant as v → cT, but
at least the behavior of the d̃zy contribution should be indicative. In that case one can extract
the most important terms and factors from |Γss′ |2 in (4.9) and (4.19), namely

∑
ss′

|Γss′ |2 ∝
~2

ρ2
0ω(k)ω(k′)

|d̃zx(q)|2 × (polynomial in k,k′) . (B.10)

Then using the expression (3.12) expressed in Cartesian coordinates, namely

|d̃zx(q)|2 =
b2 q2

y[
q2
x(1− β2) + q2

y

]2 (B.11)

the high temperature approximation (B.9) and (B.10), and the energy conservation condition
(B.4) again, inserting these all into (B.7), we arrive at a multiple integral of the form

Bscrew, tr '
2b2kBT

(2π)4ρ2
0βc

5
T

∫
dkx

∫
dky

∫
dqx

∫
dqy

|qx|
|k||k′||kz|

q2
y[

q2
x(1− β2) + q2

y

]2 P(k,q)
∣∣∣
C

(B.12)
for the drag coefficient of screw dislocations due to transverse phonon wind in the high temper-
ature limit. Here P denotes the polynomial (with positive powers of momenta) that we will have
to return to, in the final evaluation, and C reminds us that everything mist be evaluated on the
δ-function conditions used, and with kz real. This means in particular that

|k| =
√
k2
x + k2

y + k2
z =
|q2
x(1− β2) + q2

y + 2kxqy + 2kyqy|
2β|qx|

,

|k′| =
√

(kx + qx)2 + (ky + qy)2 + k2
z = |k|+ qxβ =

|q2
x(1 + β2) + q2

y + 2kxqy + 2kyqy|
2β|qx|

, (B.13)

after using (B.8). Substituting these expressions and (B.8) into (B.12) gives

Bscrew, tr '
16b2β2kBT

(2π)4ρ2
0c

5
T

∫
dkx

∫
dky

∫
dqx

∫
dqy

q4
x q

2
y

|(q2
x + q2

y + 2kxqx + 2kyqy)2 − β4q4
x|
×

× 1[
q2
x(1− β2) + q2

y

]2 P(k,q)√[
q2
x (1− β2) + q2

y + 2kxqx + 2kyqy
]2
− 4q2

x β
2 (k2

x + k2
y)

(B.14)

where the ranges of the integrals are restricted only by the edges of the first Brillouin zone and
the requirement that the argument of the square root is positive.

34



In this form (B.14) we can now examine the limit of β → 1, so that

Bscrew, tr →
b2kBT

π4ρ2
0c

5
T

∫
dkx

∫
dky

∫
dqx

∫
dqy

q4
x

q2
y

1
|(q2

x + q2
y + 2kxqx + 2kyqy)2 − q4

x|
×

× P(k,q)√[
q2
y + 2kxqx + 2kyqy

]2
− 4q2

x (k2
x + k2

y)
for v → cT . (B.15)

Counting the powers of momenta there are 4 powers of qx in the numerator of this integrand
(excluding the polynomial P) and 8 powers of momenta in the denominator. Because of the 4
powers of qx in the numerator and the cancellation of q4

x in the first denominator factor we can
be sure that the qx integral will be dominated by its upper limit of order the Debye momentum
qBZ. On the other hand the qy integral is sensitive to its lower limit because of the 1/q2

y factor.
That lower limit is determined by the condition that the argument of the square root (which
came from solving for |kz|) must be non-negative. This condition is

(q2
y + 2kyqy)2 + 4kxqx(q2

y + 2kyqy)− 4q2
xk

2
y ≥ 0 (B.16)

which can be satisfied in either one of two ways:

(qy + ky)2 ≥ 2|qx|
√
k2
x + k2

y − 2kxqx + k2
y , (B.17a)

(qy + ky)2 ≤ −2|qx|
√
k2
x + k2

y − 2kxqx + k2
y . (B.17b)

However for |qx| large and ky small the latter expression is negative and so the second condition
(B.17b) cannot be satisfied. The first condition (B.17a) can be further subdivided into two cases:

qy ≥ −ky +
[
2|qx|

√
k2
x + k2

y − 2kxqx + k2
y

] 1
2 = −ky +Q ≥ 0 , (B.18a)

qy ≤ −ky −
[
2|qx|

√
k2
x + k2

y − 2kxqx + k2
y

] 1
2 = −ky −Q ≤ 0 , (B.18b)

where we have defined

Q ≡
[
2|qx|

√
k2
x + k2

y − 2kxqx + k2
y

] 1
2 ≥ |ky| ≥ 0 (B.19)

from which we see that qy can only become zero if ky = 0 and kxqx = |kxqx| is non-negative.
Next we use partial fractions to simplify the first denominator in (B.15) into the form

1
(q2
x + q2

y + 2kxqx + 2kyqy)2 − q4
x

= 1
2q2
x

[
1

q2
y + 2kyqy + 2kxqx

− 1
q2
y + 2kyqy + 2kxqx + 2q2

x

]

' 1
2q2
x

1
q2
y + 2kyqy + 2kxqx

= 1
2q2
x

1
(qy + ky)2 + 2kxqx − k2

y

= 1
2q2
x

1
(qy + ky)2 −Q2 + 2|qx|

√
k2
x + k2

y

(B.20)

where we can ignore the second term in square brackets in the limit that q2
x is large, and the

last expression is clearly non-negative by the condition (B.17a). Hence using the results of these
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analyses and changing integration variables from qy to q′ ≡ qy + ky we can rewrite (B.15) in the
form

Bscrew, tr →
b2kBT

2π4ρ2
0c

5
T

∫
dkx

∫
dky

∫
dqx

[∫ ∞
Q

dq′ +
∫ −Q
−∞

dq′
]

q2
x

(q′ − ky)2 ×

× P(k,q)√
q′ 2 −Q2

 1
q′ 2 −Q2 + 2|qx|

√
k2
x + k2

y

 1√
q′ 2 −Q2 + 4|qx|

√
k2
x + k2

y

. (B.21)

where we can extend the q′ integral to ±∞ since it is dominated by its smallest absolute values.
It is still not possible to perform this integral in closed form. However if we continue to

assume that |qx| is of order qBZ and much larger than ky or qy which are dominated by their
lower limits, then we can approximate the last two factors in (B.21) by 1

q′ 2 −Q2 + 2|qx|
√
k2
x + k2

y

 1√
q′ 2 −Q2 + 4|qx|

√
k2
x + k2

y

' 1
4|qx|

3
2 (k2

x + k2
y)

3
4

(B.22)

and the remaining q′ integral (ignoring the polynomial P)∫ ∞
Q

dq′

(q′ − ky)2
1√

q′ 2 −Q2 +
∫ −Q
−∞

dq′

(q′ − ky)2
1√

q′ 2 −Q2

= ∂

∂k

[∫ ∞
Q

dq′

(q′ − k)
1√

q′ 2 −Q2 −
∫ ∞
Q

dq′

(q′ + k)
1√

q′ 2 −Q2

]
k=ky

(B.23)

can be performed (where we have replaced q′ → −q′ in the second integral). Since∫ ∞
Q

dq′

(q′ ∓ k)
1√

q′ 2 −Q2 = 1√
Q2 − k2

[
π

2 ± sin−1
(
k

Q

)]
(B.24)

the π/2 terms drop out of the difference in (B.23) while the sin−1 terms add, and after performing
the indicated differentiation with respect to k, we obtain for (B.23)

2
Q2 − k2

y

1 + ky√
Q2 − k2

y

sin−1
(
ky

Q

) . (B.25)

Now again because |qx| � |ky|, we can drop the sin−1
(
k

Q

)
term compared to unity in the

brackets above, and since Q2 − k2
y = 2|qx|

√
k2
x + k2

y − 2kxqx then we are left with a very simple
multiple integral from (B.21), namely

b2kBT

8π4ρ2
0c

5
T

∫
dkx

∫
dky

∫
dqx

|qx|
1
2

(k2
x + k2

y)
3
4

 1
|qx|

√
k2
x + k2

y − kxqx

 (B.26)

still ignoring the polynomial P. Indeed since the last factor in square brackets is

1
|qx|

√
k2
x + k2

y − kxqx
= 1
q2
xk

2
y

[
|qx|

√
k2
x + k2

y + kxqx
]

(B.27)
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and the second term is odd under change of sign of kx, it vanishes in the
∫
dkx integral and

(B.26) becomes simply

b2kBT

8π4ρ2
0c

5
T

∫
dky
k2
y

∫
dqx

|qx|
1
2

∫
dkx

(k2
x + k2

y)
1
4
' 2b2kBT

π4ρ2
0c

5
T
qBZ

∫
dky
k2
y

(B.28)

since the qx and kx integrals are both dominated by their upper cutoffs at the edge of the
Brillouin zone qBZ and∫ qBZ

−qBZ

dkx

(k2
x + k2

y)
1
4
'
∫ qBZ

−qBZ

dkx

|kx|
1
2

=
∫ qBZ

−qBZ

dqx

|qx|
1
2

= 4√qBZ (B.29)

which justifies a posteriori the assumption we have been using that the qx (and kx) integrals are
dominated by the upper limit qBZ of their range.

We have thus obtained (B.28) which is proportional to qBZ for dislocations traveling at the
transverse sound speed v = cT but is linearly infrared divergent in its final ky integral, if the
polynomial P is ignored, which we assumed at first to understand the structure of the momentum
integrations and their important ranges. Of course it is not correct to ignore P in the expression
(B.21) or its antecedents for the drag coefficient due to the phonon wind. As long as there are
at least two powers of ky, qy or kz in every term of this polynomial, the infrared divergence
in (B.28) will be eliminated, and all components of the momentum integrals will be driven to
their upper cutoff values of order qBZ. Since the polynomial is fourth order in the momenta, we
therefore expect no infrared divergence and

B ∝ f(µ, n)b
2kBTq

4
BZ

ρ2
0c

5
T

(B.30)

for the drag coefficient due to transverse phonons of a screw dislocation moving at sound speed.
This also means that some of the approximations made in arriving at (B.28) will not be valid, but
as long as we are sure that there is no divergence as v → cT, we can return to the original exact
expressions and evaluate the finite answer numerically with no approximations. The proportion-
ality factor f(µ, n) in eq. (B.30) still depends quadratically on the elastic constants, and observing
that ρ2

0c
4
T = µ2 we may scale them out in the expression above, i.e. f(µ, n)/ρ2

0c
5
T = f(n/µ)/cT.

The direction-dependent polynomial for screw dislocations scattering transverse
phonons

Using the representation (2.29) of Sec. 2.3 we see that ui,i = d̃i,i = 0 for a screw dislocation and
likewise ui,i = 0 for transverse phonons so that the first three terms of (2.29) do not contribute to
the matrix element of the drag coefficient of a screw dislocation coupled to transverse phonons. It
appears that the remaining two terms in (2.29) which involve both the c and h elastic constants
should contribute to the drag coefficient for screw dislocations and transverse phonons. We
concentrate only on the c term or c̃ term in (2.31) because the h term was not previously
considered and there is no available data for this elastic constant. So let us concentrate on the c
term also here to construct the polynomial P. Again this is just to analyze possible divergences
or their elimination whereas of course all non-zero contributions must be taken account of in
the end.
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Taking one of the ui,j to be the dislocation field and the other two phonon fields (also denoted
by ui,j) we have the trilinear interaction

U3
∣∣
c terms = 3c

4

∫
d3x dij (uj,l + ul,j) (ui,l + ul,i)

= 1
2!
∑
i1i2i3

∑
j1j2j3

Dj1 j2 j3
i1 i2 i3

∣∣∣
c terms

∫
d3x ui1,j1 ui2,j2 di3j3 (B.31)

from the c terms in (2.29). Thus the direction dependent tensorial coefficient is

Dj1 j2 j3
i1 i2 i3

∣∣∣
c terms

= 3c
2
[
δi1 i3δj1 j2δi2 j3 + δi1 i3δi2 j1δj2 j3 + δi1 j2δi2 j3δi3 j1 + δi1 i2δi3 j1δj2 j3

]
(B.32)

and then the matrix element

Γss′(k,k′) = ~
4ρ0

1√
ωs(k)ωs′(k′)

∑
i1 i2 i3

∑
j1 j2 j3

Dj1 j2 j3
i1 i2 i3

ei1(k̂, s) ei2(k̂′, s′) kj1 k′j2 d̃i3j3 (B.33)

has the contribution from the c terms in (B.31) and (B.32)

Γss′(k,k′)
∣∣∣
c terms

= 3c~
8ρ0

1√
ωs(k)ωs′(k′)

∑
i j lm

ei(k̂, s) ej(k̂′, s′) d̃lm tijlm (B.34)

where
tijlm(k,k′) ≡ δil (δjm k · k′ + kj k

′
m) + kl (δjm k′i + δij k

′
m) (B.35)

after relabelling summation indices. Squaring this and summing over the polarization indices
s, s′ for the two transverse phonon polarization states for which∑

s=T1,T2

ei1(k̂, s) ei2(k̂, s) = δi1i2 − k̂i1 k̂i2 ≡ πi1i2(k̂) (B.36)

is the projector transverse to the direction of propagation k, we obtain

∑
ss′=T1,T2

|Γss′(k,k′)|2
∣∣∣
c terms

= 9c2~2

64ρ2
0

1
ω(k)ω(k′)

∑
i1j1l1m1

∑
i2j2l2m2

πi1i2(k̂)πj1j2(k̂′) d̃l1m1 d̃
∗
l2m2×

× ti1j1l1m1ti2j2l2m2 . (B.37)

If we evaluate this expression for the screw dislocation which is dominated by its d̃zx term, we
see that the proportionality factor missing in (B.10) is

P
∣∣∣
c terms

= 9c2~2

64 ρ2
0

∑
i1j1i2j2

πi1i2(k̂)πj1j2(k̂′) ti1j1zx ti2j2zx (B.38)

where from (B.35)
tijzx = δiz

(
δjx k · k′ + kj k

′
x

)
+ kz

(
δjx k

′
i + δij k

′
x

)
(B.39)

and of course we must substitute for k′ = k + q and kz inside the integral (B.7) using the
δ-function constraints (B.2) and (B.8) of momentum and energy conservation.

Now the question relevant to our previous analysis of possible infrared divergences found
tentatively in (B.28) in the integral for drag coefficient for screw dislocations due to transverse
phonon wind — previously ignoring the direction dependent factor (B.38) — is how is the
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conclusion changed when this factor is taken account of. Since tijzx contains 4 terms and its
square appearing in (B.38) is symmetric, we obtain 10 terms from (B.38), which written out
explicitly are∑

i1j1i2j2

πi1i2(k̂)πj1j2(k̂′) ti1j1zx ti2j2zx = πzz(k̂)πxx(k̂′) (k · k′)2+

+ 2πzz(k̂)πxj(k̂′)kj (k · k′) k′x + 2 kzπzi(k̂)k′i πxx(k̂′) (k · k′) + 2πzi(k̂)πix(k̂′) kz k′x(k · k′)+
+ πzz(k̂) kiπij(k̂′)kj (k′x)2 + 2πzi(k̂)k′i kjπjx(k̂′) k′x kz + 2πzi(k̂)πij(k̂′)kj kz (k′x)2+

+ k2
zk
′
i πij(k̂)k′j πxx(k̂′) + 4 k2

z k
′
x k
′
i πix(k̂)k′j + 4k2

z (k′x)2 (B.40)

where
δi1i2 πi1i2(k̂) = 2 (B.41)

has been used. Each of these 10 terms contains at least two powers of kz, ky, k′y. To see this one
has to consider the 10 terms one by one and use

πzz(k̂) = 1− k2
z

k2
x + k2

y + k2
z

→ 1− k2
z

k2
x

→ 1 (B.42a)

πzz(k̂′) = 1− k′ 2x

k′ 2x + k′ 2y + k2
z

→
k′ 2y + k2

z

k2
x

(B.42b)

πxj(k̂′)kj = kx −
k′x(k · k′)

k′ 2x + k′ 2y + k2
z

→
kx(k′ 2y + k2

z)− k′x(kyk
′
y + k2

z)
k′ 2x

(B.42c)

kiπij(k̂′)kj = |k|2 − (k · k′)2

|k′|2 →
k2
x(k′ 2y + k2

z) + k′ 2x (k2
y + k2

z)− 2kxk′x(kyk′y + k2
z)

k2
xk
′ 2
x

(B.42d)

πzi(k̂)πij(k̂′)kj kz (k′x)2 = k2
z (k′x)2 k · k′

|k′|2
[k · k′

|k|2 − 1
]
→ k2

z k
′
x (k′x − kx) (B.42e)

evaluated to leading order in terms quadratic in kz, ky, k
′
y assumed small compared to k2

x, k
′ 2
x

since this is what was assumed in evaluating (B.28) without the polynomial (B.38).
Thus this explicit evaluation of the polynomial factor (B.38) left out of the integral (B.28)

for the drag coefficient of a screw dislocation due to transverse phonon wind shows that at least
two powers of the momentum components assumed small in evaluating (B.28), and which led
to its infrared divergence at v = cT are in fact removed when the correct polynomial factor is
taken account of. This means that the true expression with all factors taken account of has no
infrared divergence and one should not assume that components kz, ky, k′y are small in magnitude
compared to kx, k′x, and in fact all components appear with positive powers in the full expression
for the drag coefficients, so that all the momenta are of order of the Debye cutoff momentum qBZ,
with the finite estimate (B.30) for the final result of the drag coefficient of a screw dislocation
due to transverse phonon wind in the limit that its velocity approaches the transverse phonon
sound speed cT.

B.2 Edge Dislocations Interacting with Transverse Phonons

In the case of the edge dislocation and again concentrating on the transverse phonon wind, a more
tedious but straightforward calculation shows that the polynomial direction-dependent factor
again contains two powers of the momentum components that tend to suppress the infrared
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divergence. But the edge dislocation itself has two extra powers of these small momentum
components in the denominator so that the result remains infrared divergent in the limit v → cT,
its degree of divergence being 1/(1− β2

T)1/2 for edge dislocations.

B.3 Fitting functions

Based on the present analysis at high velocity together with the small velocity limit discussed
in Section 5, we expect good fits over the range we computed using

Bedge ≈ Ce
0 + Ce

1βT + Ce
2β

2
T + Ce

3 log
(
1− β2

T

)
+ Ce

4

 1√
1− β2

T

− 1

 ,

Bscrew ≈ Cs
0 + Cs

1βT + Cs
2β

2
T + Cs

3β
4
T + Cs

4β
16
T . (B.43)

The divergent terms are motivated by the present analysis, and the polynomial terms are needed
to get good agreement in the small velocity regime. From (5.3) we know that the next to leading
order term in the small velocity expansion is quadratic in the velocity (which is also why we
need β2

T in the pole terms), and since there is no divergent term in the screw case, we required
an additional β8

T term in order to increase the accuracy of the fit. This latter step was validated
using the numerical results of Section 5. The relations between the β2

T, β4
T, and β6

T terms were
determined empirically as well.
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